
PROJECT REPORT

ON

SALESFORCE-OUTLOOK(64-bit) CONNECTOR

FOR

PERSISTENT SYSTEMS Ltd.

BY

 SHUBHANKAR RAJ

UNIVERSITY OF PUNE

MASTER OF COMPUTER APPLICATION

M.E.S’s

INSTITUTE OF MANAGEMENT AND CAREER COURSES

(IMCC), PUNE-411029

2012-13

Apr 23, 2013

To Whomsoever it May Concern

This is to certify that Shubhankar Raj is undergoing industrial training at
Persistent Systems Ltd. Pune under the guidance of Mr. Dineshsing Girase.

The details are as follows: -

Duration: 09th January 2013 to 05th July 2013

Project Title: “Salesforce – Outlook (64-bit) Connector”

For Persistent Systems Limited

Sanjay Karmarkar
Associate Senior Manager-Human Resources

Acknowledgement

 I express heartfelt gratitude to Persistent Systems Ltd and

Mr. DineshsingGirasefor helping me to carry out the project. The

other team members have also played an important part in this

project.

I am grateful to Dr. V. H. Inamdar, Director of IMCC for

providing us with all the resources needed for the project.

 I would also like to thank Dr. SantoshDeshpande, Head of

Department for his support.

 I would like to thank Mrs. ManasiBhate, my internal project

guide, for his invaluable guidance during the course of the project. I

am intented to her for giving me her valuable time and cooperation.

Shubhankar Raj

Index

 Contents Page No.

 1:INTRODUCTION

1.1 Company Profile 1-3

1.2 Existing System and Need for

System

4-7

1.3 Scope of Work 8-10

1.4 Operating Environment- Hardware

and software

11

1.5 Details Description of Technology

Used

12-18

 2:PROPOSED SYSTEM

2.1 Proposed System 19-20

2.2 Objective of System 21

2.3 User Requirements 22

 3:ANALYSIS & DESIGN

3.1 Object Diagram 23

3.2 Class Diagram 24

3.3 Use Case Diagram 25-28

3.4 Activity Diagram 29-31

3.5 Sequence Diagram 32

3.6 Module Hierarchy 33

3.7 Component Diagram 34

3.8 Deployment Diagram 35

3.9 Module Specification 36-38

3.10 User Interface Design 39-45

3.11 Test Procedures and Implementation 46-55

 4:USER MANUAL

4.1 User Manual 56-67

4.2 Operations Manual 68-70

4.3 Program Specifications 71-77

 Drawbacks and Limitations 78

 Proposed Enhancements 79

 Conclusions 80

 Bibliography

 Annexure 1:User Interface Screen

 Annexure 2:Output Report

 Annexure 3:Sample Code

CHAPTER 1:

INTRODUCTION

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 1

1.1 Company Profile

Name: Persistent Systems Limited

Website: www.persistentsys.com

Persistent Systems Ltd.

1.1.1 Company Information

Established in 1990, Persistent is a global company specializing in

software products and technology services. For more than two

decades, Persistent has been an innovation partner for world’s

largest technology brands, leading enterprises and pioneering start-

ups. With a global team of 7,000+ employees, Persistent has 300+

customers spread across North America, Europe and Asia.

1.1.2 Core Competencies

Today, Persistent focuses on best-in-class solution in four key next

generation technology areas: Cloud Computing, Analytics, Mobility

and Collaboration, for telecommunication, life sciences, consumer

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 2

packaged goods, banking & financial services and health care

verticals.

1.1.3 Persistent Foundation

Persistent has been contributing to local and regional Health and

Education institutions since 1995. In 2009, the Persistent Foundation

was formally established as a public charitable trust to aid in the

company’s charitable activities. Persistent earmarks 1% of net profit

for Persistent Foundation programs.

Persistent Foundation is primarily involved in the following three

key areas:

� Healthcare

� Education

� Community Development

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 3

1.1.4 Persistent Services

Persistent has created a professional services practice based on its

well established product knowledge, deep technical expertise and

experience working with product teams.

Persistent delivers integrated end to end solutions and services for

our professional services customers. In order to deliver best in class

solutions we leverage our skills and expertise across major industry

domains as well as IT infrastructure. This helps our clients make

their businesses more efficient, agile and responsive to their

customers' needs.

Persistent provides professional services in several key areas:

� Security

� Big Data

� BI & Analytics

� Cloud

� Mobility

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 4

1.2Existing system and Need for System

Existing system

Contact specific data that is in Outlook is pretty much visible only to

the owner of the Outlook account and it is not reflected in the

Company CRM and vice-versa. In the same way Events and Tasks

scheduled in Outlook is also not reflected in the Company CRM and

vice-versa. These encounters following limitations:-

 I) Users don’t have a single view of the relationship.

 II) Other people on your team don’t have access to

the information.

 III) Hard to assist in activity tracking

Existing Salesforce for Outlook doesn’t facilitates user to schedule

synchronization time period according to their need. Existing

Synchronizing time period is 1 hr.

Existing System doesn’t provide log information to the user.

Additionally, there are several connectors available in the

market place for syncing the Contacts between the personal

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 5

Outlook Account and Company CRM, but all connector doesn’t

operate on 64-bit Operating System and 64-bit Outlook.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 6

Need for System

The key reason to create integrations between Outlook and CRM

system is to ensure that Contact specific data that is in Outlook (and

pretty much visible only to the owner of the Outlook account) is

reflected in the company CRM system. In the same way when a task

and event is scheduled to a CRM account than it will be

automatically reflected in the personal Outlook Account and vice-

versa. So that

(i) User have a single view of the relationship

(ii) Other people on User’s team can have access to the

information.

(iii) To assist in activity tracking.

The application should facilitate user to schedule synchronization

time period according to their need.

The application should provide information of the history of

Synchronization.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 7

Additionally, the application will operate on 32-bit as well as 64-

bit Operating System and 32-bit and 64-bit Outlook.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 8

1.3 Scope of Work

This Application will work as a middleware Application

between Salesforce and Outlook for the Synchronization of

Contacts, Events and Tasks. The Application provides various

Options for Synchronization of Contacts, Events and Tasks between

SalesforceCRM and Outlook. Options are as follows:-

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 9

1. Selection of Items for Synchronization:

User can select the Items they want to Synchronize.

The Item are:

a). Contacts.

b). Events.

c). Tasks

2. Select the direction of Synchronization:

User can set the Synchronization settings according to

their need , Synchronization settings provides

following Options to the users:

a). Salesforce CRM To Outlook

b). Both directions.

3. Set the Timer time period on which the

Synchronization will be done according to the users

settings.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 10

4. User’s different configuration settings :

a). Outlook Configurations.

b). Salesforce CRM Configurations

c). Proxy Configurations

d). Synchronize Configurations

are stored in the Properties Files and used by the

application when the application is executed.

5. User can update different configuration settings except

Outlook UserId and SalesforceUserId, Once these two

informations are added to the corresponding properties

files they can’t be modified further.

6. All the Configurations information will be stored in

the encrypted format.

7. Application provides logs for all the activities.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 11

1.4 Operating Environment - Hardware and Software

Hardware Requirement:

 Processor : -Intel Pentium IV or More

 RAM : - 512 MB.

 Hard Disk : - 80GB.

Software Requirement:

• Internet Explorer6.0 or later version

• Windows XP or Later

• JDK 1.7, Eclipse

• MS-Outlook 2007 or Later

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 12

1.5Detail Description of Technology Used

This connector application has developed using Java. Java

is purely object oriented technology and provides high level of

flexibility.

Java is a set of several computer software products and

specifications from Sun Microsystems (which has since merged

with Oracle Corporation), that together provide a system for

developing application software and deploying it in a cross-

platform computing environment. Java is used in a wide variety

of computing platforms from embedded devices and mobile

phones on the low end, to enterprise servers and supercomputers on

the high end. While less common, Java applets are sometimes used

to provide improved and secure functions while browsing the World

Wide Web on desktop computers.

Writing in the Java programming language is the primary way

to produce code that will be deployed as Java bytecode. Java

syntax borrows heavily from C and C++, but object-oriented features

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 13

are modelled after Smalltalk and Objective-C. Java eliminates

certain low-level constructs such as pointers and has a very simple

memory model where every object is allocated on the heap and all

variables of object types are references. Memory management is

handled through integrated automaticgarbage collection performed

by the JVM.

Swing is the primary Java GUI widget toolkit. It is part

of Oracle's Java Foundation Classes (JFC) — an API for providing

a graphical user interface (GUI) for Java programs.

Swing was developed to provide a more sophisticated set of

GUI components than the earlier Abstract Window Toolkit (AWT).

Swing provides a native look and feel that emulates the look and feel

of several platforms, and also supports a pluggable look and feel that

allows applications to have a look and feel unrelated to the

underlying platform. It has more powerful and flexible components

than AWT. In addition to familiar components such as buttons,

check boxes and labels, Swing provides several advanced

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 14

components such as tabbed panel, scroll panes, trees, tables, and

lists.

Unlike AWT components, Swing components are not

implemented by platform-specific code. Instead they are written

entirely in Java and therefore are platform-independent. The term

"lightweight" is used to describe such an element.

This Connector uses java APIs provided by Microsoft and

Salesforce.

An application programming interface (API) is

a protocol intended to be used as an interface by software

components to communicate with each other. An API is a library

that may include specification for routines, data structures, object

classes, and variables. An API specification can take many forms,

including an International Standard such as POSIX, vendor

documentation such as the Microsoft Windows API, the libraries of

a programming language, e.g., Standard Template

Library in C++ or Java API.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 15

EWS Java API :

Java implementation of the Exchange Web Services (EWS)

API. This API gives developers programmatic access to Exchange

Server 2007 SP1 and above.

Exchange Web Services (EWS) provides the functionality to

enable client applications to communicate with the Exchange server.

EWS Java Proxy application simplifies the use of EWS in Java client

applications, by providing API which is dramatically simpler for

developers. EWS Java Proxy provides access to much of the same

data that is made available through Microsoft Office Outlook. EWS

clients can integrate Outlook data into Line-of-Business (LOB)

applications. SOAP provides the messaging framework for messages

sent between the client application and the Exchange server. The

SOAP messages are sent by HTTP.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 16

WSC API:

The Force.com Web Service Connector (WSC) is a high

performing web service client stack implemented using a streaming

parser. WSC also makes it much easier to use the Force.com API

(Web Services/SOAP or Asynchronous/REST API). WSC can be

used to invoke any doc literal wrapped web service

The Force.com Web Services Connector (WSC) is a code-

generation tool and runtime library for use with Force.com Web

services. WSC uses a high-performing Web services client stack

implemented with a streaming parser. It is the preferred tool for

working with salesforce.com APIs. You can write Java applications

with WSC that utilize the Force.com SOAP API, Bulk API, and

Metadata API.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 17

SOAP:

SOAP, originally defined as Simple Object Access Protocol,

is a protocol specification for exchanging structured information in

the implementation of Web Services in computer networks. It relies

on XML Information Set for its message format, and usually relies

on other Application Layer protocols, most notably Hypertext

Transfer Protocol (HTTP) or Simple Mail Transfer Protocol(SMTP),

for message negotiation and transmission.

SOAP can form the foundation layer of a web services protocol

stack, providing a basic messaging framework upon which web

services can be built. This XML based protocol consists of three

parts: an envelope, which defines what is in the message and how to

process it, a set of encoding rules for expressing instances of

application-defined datatypes, and a convention for representing

procedure calls and responses. SOAP has three major

characteristics: Extensibility (security and WS-routing are among the

extensions under development), Neutrality (SOAP can be used over

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 18

any transport protocol such as HTTP, SMTP, TCP, or JMS)

and Independence (SOAP allows for any programming model)

CHAPTER 2:

PROPOSED SYSTEM

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 19

2.1 Proposed System

• SALESFORCE-OUTLOOK (64-bit) CONNECTOR is

proposed to perform Synchronization between Salesforce

and Outlook Account for Outlook 64-bit.

• Application facilitates user to select the items to be

synced according to their need. Such as- Contacts, Events,

Tasks.

• Application facilitates user to select the Synchroization

direction. Such as Salesforce to Outlook and Bi-

directional.

• Application facilitates user to schedule the

synchronization time for automatic synchronization.

• Application should provide Configuration settings for

users. Such as-Outlook Configuration, Salesforce

Configuration, Proxy Configuration and Synchronize

Configurations. These Configuration Settings are stored

in separate properties files for different settings.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 20

• Application stores Sync information in the log files for

future use.

• Application is supposed to provide next Synchronize time

schedule after each synchronization.

• Application is supposed to provide proper message for the

items which are not synced.

• Application is supposed to provide a good User Interface

which can be easily handled by the user.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 21

2.2 Objective of the System

• The main objective of the system is to reduce the workload of

creating or updating contacts, events and tasks on the

opposite sides of the accounts if any new item is created.

• Provide facility to synchronize the items in single click either

Salesforce to outlook or Bi-directional.

• Provide facility to schedule the automatic sync time so that

user do not have to select sync option manually.

• Helps user to maintain consistency in Salesforceaccount’s

item information and Outlook account information of items.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 22

2.3 User Requirement

User Interface :Application provides user friendly interface so that

user will interact easily with the application.

Consistency: Since Application is designed for Syncronizing items

both ways (Outlook &Salesforce) the item information will be

Consistent on both the sides.

Flexibility: Application provide facility to user to select the Sync

direction as well as to schedule the Synchronization automatically.

Automatic: Application provide facility for automatic sync by

setting the timer. So that user don’t have to select the sync option

manually.

Item choice:Application facilitates user to select the items they want

to synchronize.

CHAPTER 3:

ANALYSIS & DESIGN

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 23

3.1Object Diagram

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 24

3.2Class Diagram

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 25

3.3Usecase Diagrams

3.3.1 Business Usecase Diagram

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 26

3.3.2 Usecase Diagram for User’s Configuration

Settings

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 27

3.3.3 Usecase Diagram for Establishing Connection

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 28

3.3.4 Usecase Diagram for Synchronization

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 29

3.4Activity Diagrams

3.4.1Activity Diagram for Contact Synchronization

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 30

3.4.2Activity Diagram for Task Synchronization

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 31

3.4.3 Activity Diagram for Event Synchronization

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 32

3.5Sequence Diagram

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 33

3.6Module Hierarchy

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 34

3.7Component Diagram

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 35

3.8Deployment Diagram

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 36

3.9Module Specification

This project contains following Modules:-

• Connector Frame

• (Application)Java to Outlook

• (Application)Java to Salesforce

• Synchronization

• Encryption-Decryption

Connector Frame

1. This module deals with designing the Configuration setting

windows and the window for providing sync options.

2. The information filled through the interface is stored in the

properties files.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 37

(Application)Java to Outlook

1 Establish connection with Microsoft web exchange server

using the user’s credential stored in the properties file.

2 Read Contacts from the Microsoft web exchange server.

3 Create Contacts on Microsoft web exchange server.

4 Read events from Microsoft web exchange server.

5 Create events on Microsoft web exchange server

6 Read tasks from Microsoft web exchange server.

7 Create tasks on Microsoft web exchange server.

(Application)Java to Salesforce

1. Establish connection with Salesforce server using the

user’s credential stored in the properties file.

2. Read Contacts from the Salesforce server.

3. Create Contacts on Salesforce server.

4. Read events from Salesforce server.

5. Create eventson Salesforce server.

6. Read tasks from Salesforce server.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 38

7. Create tasks on Salesforce server

Synchronization

1. Implements algorithm by using modules (Java to

Outlook and Java to Salesforce) when to create a new

item, update item or delete item on either sides.

2. This module provides two functionality :-

Outlook to Salesforce.

Salesforce to Outlook.

Encryption-Decryption

1. Encrypt the Configuration information before storing it

to the properties files.

2. Decrypt the Configuration information when it is

retrieved from the properties file for use.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 39

3.10User Interface Design

Application Icon

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 40

Installation Steps

Step 1:

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 41

Step 2:

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 42

Step 3:

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 43

Step 4:

 Salesforce

Persistent Systems Ltd.

Salesforce Configuration settings

Outlook Configuration settings

Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd.

Configuration settings

Configuration settings

44

 Salesforce

Persistent Systems Ltd.

Proxy Configuration settings

Synchronize settings

Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd.

Proxy Configuration settings

Synchronize settings

45

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 46

3.12 Test Procedures and Implementation

What is software testing?

Software testing is a critical element of software quality assurance

and represents the ultimate review of specification, design and code

generation. It is a process of executing a program with a primary

objective of finding errors. Testing gives the guarantee that the

software does not fail and runs according to its specifications and in

the way the end user expects. This can be done by various software

testing techniques which provide a systematic guidance for

designing tests that exercise the input and output domains of the

program to uncover errors in program function, behavior and

performance.

The following software testing techniques were used in order to

uncover errors in the system:

• Unit testing

• Integration testing

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 47

• White box testing

• Black box testing

• Acceptance tests (Alpha and Beta testing)

1: Unit Testing

Unit testing is normally considered as an adjunct to the coding step.

It is the test for the small units of code, e.g. programs, modules or

procedures, in order to ensure that they perform their intended

functions. All possible paths through the control structure are

exercised to ensure that all statements in a program are executed at

least once. Unit testing is also done to test the data flow across a

module interface.

The following errors are uncovered during unit testing:

• Comparison of different data types.

• Incorrect logical operators or precedence.

• Incorrect comparison of variables.

• Improper or nonexistent loop termination.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 48

• Improperly modified loop variable.

2: Integration Testing

Integration testing is a systematic technique for constructing the

program structure while at the same time conducting tests to uncover

errors associated with interfacing. During this activity, unit tested

components are taken and a program structure is built as per the

design. Then incremental integration is performed on the system.

This means that programs are constructed and tested in small

increments instead of testing the entire program as a whole. This is

done because correction of errors becomes difficult in case of whole

program testing as many errors were detected and it is not easy to

correct them at one go. Thus, through incremental integration

testing, any error uncovered could be easily noted and corrected and

interfaces are tested completely.

3: White Box Testing

White box testing is also called as glass box testing. It is related with

the structure (internal logic) of the program. It helps in uncovering

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 49

many errors that black box testing cannot. During white box testing

activity, every statement of programs is executed at least once. All

independent paths are also executed. Every logical decision is

executed to check both true and false conditions. All loops are

executed at their boundaries and within their operational bounds.

Validation checks are also done during this process.

4: Black Box Testing

Black box testing, also known as behavioral testing, focuses on the

functional requirements of the software. It is related to input and

output only and not related with the internal structure of the

program. This testing is also done so as to find errors such as:

• Initialization and termination errors

• Behavior and performance errors

• Incorrect or missing functions

• Interface errors

• Errors in data structures and external database access

• Performance errors

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 50

5: Acceptance Testing (Alpha & Beta Testing)

An acceptance test is a test carried out by the customer or end user

rather than the developer in order to enable the customer to validate

all requirements. Alpha testing and beta testing are two types of

acceptance tests that are conducted.

6: Alpha Testing

Alpha test is conducted in a controlled environment. As a matter of

fact, the end user conducts alpha test at the developer’s site. During

the course of the system development, the end user is operating the

software in front of the developer and the errors and other problems

are recorded. Rectification is made accordingly.

7: Beta Testing

Beta testing is also conducted by the end user, but in the absence of

the developer. Here, the end user himself records all the problems

that he encounters during testing the system and then reports them to

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 51

the developer at regular intervals. As a result of problems reported

during beta testing, modifications are made to overcome the problem

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 52

Test Cases

Test Case ID # 1

Test Case Name To test functionality of

Synchronization from Salesforce to

Outlook.

Prerequisite In Sync Configuration Direction

should be set to salesforce to

Outlook and item to Sync should be

Contacts.

Objective To find out bugs in Syncing the

Contacts from Salesforce to

outlook.

Sr.No Steps to

be

executed

Expected

Result

Actual

Result

Pass/Fail

Criteria

1 1.Salesforce

contact

without e-

mail.

2.Outlook

contacts do

not have

same name

as

Salesforce

contact.

It should create

new contact in

outlook.

Created

contact

reflected in

outlook

Pass

2. 1. Salesforce

contact with

e-mail.

2. Outlook

contacts

have same

It should create

new contact in

outlook..

Created

contact

reflected in

outlook

Pass

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 53

name as

Salesforce

contact but

do not have

e-mail.

3. 1. Outlook

Contact

deleted.

Corresponding

Salesforce

contact should

be deleted.

Corresponding

Salesforce is

deleted.

Pass

4. 1.Salesforce

Contact is

deleted.

Corresponding

Outlook contact

should not be

deleted.

Corresponding

Outlook contact

is not deleted.

Pass

5. 1. 520 new

contacts are

synced

Contacts should

be created in

outlook

Contacts should

be created in

outlook

Pass

6. 1. delete all

contacts

from outlook

and sync

All salesforce

contact should

be deleted.

All salesforce

contacts are

deleted.

Pass

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 54

Test Case ID# 2

Test Case Name To test functionality of

Synchronization Bi-directional

i.eSalesforce to Outlook and outlook

to salesforce.

Prerequisite In Sync Configuration Direction

should be set to Bi-Directional and

item to Sync should be Contacts.

Objective To find out bugs in Syncing the

Contacts Bidirectional

Sr. No Steps to

executed

Expected

Result

Actual

Result

Pass/Fail

 First

name

Textbox

Test

cases

1. 1.create a

new contact

in outlook

without

surname.

It should

display message

“Contact could

not sync due to

missing

surname”

It displays

message

“Contact could

not sync due to

missing

surname”

Pass

2. 1. create a

blank new

contact in

outlook

 Contact should

not be synced to

salesforce.

 Contact not

synced to

salesforce.

Pass

3. 1.delete

contact

from

Salesforce

Corresponding

outlook contact

should not be

deleted.

Corresponding

outlook contact

is not deleted

from outlook

contact.

Pass

4. 1.Update Contacts should Updated Pass

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 55

contact in

salesforce.

2.Update

other

contact in

outlook

be updated both

sides

contacts are

reflected both

Sides.

CHAPTER 4:

USER MANUAL

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 56

4.1 User Manual

 The User Manual is Prepared reflexively because it is an item

that must accompany every system. Manual is given so that there is

quick reference about the system package.

 This Manual will help user to Navigate through the

Application and help user out whenever there is any trouble while

using application.

 User manual provides user with the ease of operating the

system. If intended user of the system feels any problem in operating

the system, they can refer to this manual to clear their doubts. This

user manual guides the users of the system and provides them the

briefing of the system to how to use the system.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 57

Setup of Salesforce-Outlook(64-bit) Connector

This is Setup of the Application.

Double Click on the setup to install the application.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 58

Installation steps

General Information before installation starts

Click on the Next button

to proceed the installation

Click Cancel to exit

from the setup

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 59

Select the location for installing the Application:

Click Browse to select the location

where application will be installed.

Click Back to go to

previous step
Click Next to go to next step of

installation after selecting the folder

location.

Exit from the setup

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 60

Installation confirmation

Click Back button to go to

previous step
Click Install button to

invoke installation

Click Cancel to Exit

from setup

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 61

Showing installation progress

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 62

Asking user to select the computer restart and to finish the

installation

Select this radio

button to restart the

computer now

Select this radio

button to restart the

computer later

Click Finish to finish the

installation.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 63

Execute the Application

Right click on this icon

and select the option

you want to perform.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 64

Options provided by the application

Click About to know

about the product.

Click this button to

start Syncing

Click configure to

change configuration

Click exit to exit from

application

 Salesforce

Persistent Systems Ltd.

Option provided by clicking on Configuration

Click this tab to insert

Salesforce Configuration

Click this button to save the

information

Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd.

Option provided by clicking on Configuration

Click this button to start sync.

Click this tab to insert

force Configuration

Input

salesforce

username

Enter password

Enter

Salesforce

Security token

Click this button to save the

information

65

Click this button to start sync.

esforce

username

Salesforce

Security token

 Salesforce

Persistent Systems Ltd.

Click this tab

to configure

outlook

information

Click this

tab to

configure

proxy

settings

Enter proxy

username

Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd.

Enter

username

Enter

password

Click this button to save

information

Enter proxy host

name

Enter proxy

port name

Enter proxy

username

Enter proxy

passwordClick to save the

information

66

Enter

password

Enter proxy host

Enter proxy

password

 Salesforce

Persistent Systems Ltd.

Click on this

tab to

configure

sync settings

Enter time in min

to schedule your

automatic sync

Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd.

Click on this

configure

sync settings

Select this if you want bi-

directional sync

Enter time in min

to schedule your

automatic sync

67

Click

this

butt

on

to

save

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 68

4.2 Operation Manual/Menu Explanation

Menu screen provide user with ease of access to various part of the

application.

Menu explanation describes the various menus used in the system.

Different menus

are as follows.

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 69

Based on the selection of above menu there are more menus with

different options.

Menu After Clicking on Configure button.

Click About to know

about the product.

Click this button to

start Syncing

Click configure to

change configuration

Click exit to exit from

application

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 70

Menu for Configure button

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 71

4.3Program Specification/Flow Chart

The system is developed in JAVA .

Following are the program specification used in the development

process explained with the help of flowcharts.

4.3.1 Main Flowchart

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 72

4.3.2 Flowchart for SalesforceTo Outlook Contact

Synchronization

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 73

4.3.3SalesforceTo Outlook Task Synchronization

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 74

4.3.4 SalesforceTo Outlook Event Synchronization

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 75

4.3.5 Outlook to salesforce Synchronization

(Note : In bi-directional synchronization, first salesforce to outlook

synchronization is done and then outlook to salesforce

synchronization is completed)

 Salesforce

Persistent Systems Ltd.

Field Mapping for Synchronization

Field mapping for contact

Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd.

Field Mapping for Synchronization

Field mapping for contact item

76

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 77

Field mapping for Task

Field Mapping for Event

DRAWBACKS

&

LIMITATIONS

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 78

Drawbacks & Limitations

a) All fields are not mapped between salesforce and outlook

account.

b) 2000contacts can be inserted at once in salesforce account.

c) Blank Contact of Outlook can’t be synced to the

salesforce.

d) User’s userid can’t be modified once inserted.

e) Panel is not attached to the outlook.

PROPOSED

ENHANCEMENT

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 79

Proposed Enhancement

User requirements keep changing as the system is being used.

Some of the future enhancements that can be done to this system

are:-

a) All fields will be mapped between salesforce and outlook

account.

b) Panel will be attached to the outlook.

CONCLUSIONS

 Salesforce-Outlook (64-bit) Connector

Persistent Systems Ltd. 80

Conclusions

All the requirements stated by the company have been addressed in

this application.

 As we know that, any project even on completion requires

constant improvement and changes which gives way for release of

new version. We made this application user friendly.

 For developing this application we used technologies such as

Java, Exchange web services , SOAP which are widely used now-a-

days.

BIBLIOGRAPHY

Bibliography

Books:

The Complete Reference java.

Salesforce Developer Guide

URLs:

www.sun.java.com

www.google.com

www.help.salesforce.com

ANNEXURES

ANNEXURE 1:User Interface Screens

Application Set up Icon

Installation Steps

Step – 1

Step-2

Step-3

Step-4

Step-5

Step-6

Configuration settings input screens

Input Screen for Salesforce Configuration

Input Screen for Outlook Configuration

Configuration settings input screens

Input Screen for Salesforce Configuration

Input Screen for Outlook Configuration

Input Screen for Proxy Configuration

Input Screen for Sync Configuration

Input Screen for Proxy Configuration

Input Screen for Sync Configuration

ANNEXURE 2: Output Report with Data

Contacts Synchronization

Outlook without any Contact (Before Synchronization)

Salesforce Account before syncing contact

Outlook Account after Synchronizing from slaesforce to outlook

Updating a saleforce contact

After updation sync result in outlook

Inserted 10,000 contacts in Outlook

All 10,000 Contacts in Salesforce after Synchronization

All 10,000 Contacts in Salesforce after Synchronization

Deleted all Contacts in Outlook

Deleted all Contacts in Outlook

Deleted all Contacts from Salesforce except those 15 contacts

which do not have delete permission

Event Synchronization

Event in SalesforceBefore Synchronization

Event of Salesforce reflected in Outlook after Sync

Task Synchronization

Task in Salesforce

Reflected Task in Outlook after Synchronization

ANNEXURE 3: Sample Code

Sample Code of Configuration Frame

packagepersistent.salesforceforoutlook;

importjava.awt.Dimension;

importjava.awt.FlowLayout;

importjava.awt.event.ActionEvent;

importjava.awt.event.ActionListener;

importjava.io.FileInputStream;

importjava.io.FileNotFoundException;

importjava.io.FileOutputStream;

importjava.io.IOException;

importjava.util.Properties;

importjavax.swing.*;

public class ConnectorConfigFrame extends JFrame

{

 private static final long serialVersionUID = 1L;

 public static void main(String[] args)

 {

 @SuppressWarnings("unused")

 ConnectorFramecFrame= new ConnectorFrame();

 }

 publicConnectorFrame()

 {

JTabbedPaneconnectorTabbedView = new

JTabbedPane();

connectorTabbedView.setPreferredSize(new

Dimension(100, 200));

 setSize(550,200);

connectorTabbedView.addTab("Home", new

HomePanel());

connectorTabbedView.addTab("Salesforce

Configuration", new SalesforceConfigPanel());

connectorTabbedView.addTab("Outlook

Configuration", new OutlookConfigPanel());

connectorTabbedView.addTab("Proxy Configuration",

new ProxyConfigPanel());

connectorTabbedView.addTab("Synchronization

Configuration", new SyncConfigPanel());

 connectorTabbedView.setTabPlacement(JTabb

edPane.LEFT)

 add(connectorTabbedView);

 setVisible(true);

 }

}

classHomePanel extends JPanel

 {

private static final long serialVersionUID = 1L;

 privateJButtonsfSync = new JButton("Synchronize");

 publicHomePanel()

 {

this.setLayout(new

FlowLayout(FlowLayout.CENTER));

 add(sfSync);

sfSync.addActionListener(new ActionListener()

{

 public void actionPerformed(ActionEvent e) {

 Properties propSync = new Properties();

 try {

propSync.load(new

FileInputStream("syncconfig.properties"

));

 } catch (FileNotFoundException e1) {

 e1.printStackTrace();

 //log this into log file

 } catch (IOException e1) {

 e1.printStackTrace();

 //log this into log file

}

if("BiDirectional".equalsIgnoreCase(propSync.getProperty("

syncBiDirectional"))){

 Synchronization synchronize=new Synchronization();

 synchronize.slaesforceToOutlook();

 synchronize.outlookToSalesforce();

 }else{

 System.out.println("Salesforce to outlook");

 Synchronization synchronize=new Synchronization();

 synchronize.slaesforceToOutlook();

 }

 }

 });

 }

 }

 classSalesforceConfigPanel extends JPanel

 {

private static final long serialVersionUID = 1L;

publicSalesforceConfigPanel()

 {

this.setLayout(new

FlowLayout(FlowLayout.CENTER));

JLabelsfUsername_Label=new

JLabel("Username ");

JLabelsfPassword_Label=new

JLabel("Password ");

JLabelsfSecurityToken_Label=new

JLabel("Security Token ");

finalJTextFieldsfUserName_TextField=new

JTextField(20);

finalJTextFieldsfPassword_TextField=new

JTextField(20);

finalJTextFieldsfSecurityToken_TextField=new

JTextField(20);

 JButtonsfSave=new JButton("Save");

 add(sfUsername_Label);

 add(sfUserName_TextField);

 add(sfPassword_Label);

 add(sfPassword_TextField);

 add(sfSecurityToken_Label);

 add(sfSecurityToken_TextField);

 add(sfSave);

 sfSave.addActionListener(new ActionListener()

 {

 public void actionPerformed(ActionEvent e) {

 Properties prop = new Properties();

 try {

 //set the properties value

 /*************SALESFORCE************/

 prop.setProperty("salesforceUsername",sfUserName_TextFie

ld.getText());

 prop.setProperty("salesforcePassword",sfPassword_TextField

.getText());

 prop.setProperty("salesforceToken",sfSecurityToken_TextFie

ld.getText());

 //save properties to project root folder

 prop.store(new

FileOutputStream("salesforceconfig.properties",true),

null);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 });

 }

 }

 classOutlookConfigPanel extends JPanel

 {

 private static final long serialVersionUID = 1L;

 publicOutlookConfigPanel()

 {

this.setLayout(new

FlowLayout(FlowLayout.CENTER));

JLabeloutlookUsername_Label=new

JLabel("Username ");

JLabeloutlookPassword_Label=new

JLabel("Password ");

finalJTextFieldoutlookUserName_TextField=ne

w JTextField(20);

finalJTextFieldoutlookPassword_TextField=ne

w JTextField(20);

 JButtonoutlookSave=new JButton("Save");

 add(outlookUsername_Label);

 add(outlookUserName_TextField);

 add(outlookPassword_Label);

 add(outlookPassword_TextField);

 add(outlookSave);

 outlookSave.addActionListener(new ActionListener()

 {

 public void actionPerformed(ActionEvent e) {

 Properties propOutlook = new Properties();

 try {

 //set the properties value

 /*************OUTLLOOK************/

EncryptionDecryptionencryptionDecryption=new

EncryptionDecryption();

propOutlook.setProperty("outlookUsername

",outlookUserName_TextField.getText());

propOutlook.setProperty("outlookPassword

",encryptionDecryption.encode(outlookPassword_Text

Field.getText()));

 //save properties to project root folder

propOutlook.store(new

FileOutputStream("outlookconfig.properties",true),

null);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 });

 }

 }

 classProxyConfigPanel extends JPanel

 {

private static final long serialVersionUID = 1L;

 publicProxyConfigPanel()

 {

this.setLayout(new

FlowLayout(FlowLayout.CENTER));

JLabelproxyHost_Label=new JLabel("Host

");

JLabelproxyPort_Label=new JLabel("Port

");

JLabelproxyUsername_Label=new

JLabel("Username ");

JLabelproxyPassword_Label=new

JLabel("Password ");

finalJTextFieldproxyHost_TextField=new

JTextField(20);

finalJTextFieldproxyPort_TextField=new

JTextField(20);

finalJTextFieldproxyUsername_TextField=new

JTextField(20);

finalJTextFieldproxyPassword_TextField=new

JTextField(20);

 JButtonproxySave=new JButton("Save");

 add(proxyHost_Label);

 add(proxyHost_TextField);

 add(proxyPort_Label);

 add(proxyPort_TextField);

 add(proxyUsername_Label);

 add(proxyUsername_TextField);

 add(proxyPassword_Label);

 add(proxyPassword_TextField);

 add(proxySave);

 proxySave.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 Properties propProxy = new Properties();

 try {

 //set the properties value

/***********PROXYSETTING*****************/

propProxy.setProperty("proxyhost",

proxyHost_TextField.getText());

propProxy.setProperty("proxyport",proxyPort_TextField.getT

ext());

propProxy.setProperty("proxyUsername",proxyUsername_Te

xtField.getText());

propProxy.setProperty("proxyPassword

",proxyPassword_TextField.getText());

 //save properties to project root folder

 propProxy.store(new

FileOutputStream("proxyconfig.properties",true), null);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 });

 }

 }

classSyncConfigPanel extends JPanel

 {

 private static final long serialVersionUID = 1L;

 publicSyncConfigPanel()

 {

this.setLayout(new

FlowLayout(FlowLayout.CENTER));

JLabelsyncDirection_Label=new

JLabel("Synchronization Direction ");

JLabelsyncInterval_Label=new JLabel("Auto-

Sync Interval ");

finalJRadioButtonsyncBiDirectional=new

JRadioButton("Bi Directional ");

finalJRadioButtonsyncSftoOutlook=new

JRadioButton("Salesforce to Outlook

");

 ButtonGroup group = new ButtonGroup();

 group.add(syncBiDirectional);

 group.add(syncSftoOutlook);

 finalJTextFieldsyncInterval_TextField

=new JTextField(20);

 JButtonoutlookSave=new JButton("Save");

 add(syncDirection_Label);

 add(syncBiDirectional);

 add(syncSftoOutlook);

 add(syncInterval_Label);

 add(syncInterval_TextField);

 add(outlookSave);

 outlookSave.addActionListener

(newActionListener() {

 public void actionPerformed(ActionEvent e) {

 Properties propSync = new Properties();

 try {

 //set the properties value

/***********Synchronization setting****************/

 if(syncSftoOutlook.isSelected()

propSync.setProperty("syncDirectiont",syncSftoOutlook.getText());

 else

 propSync.setProperty("

syncBiDirectional", syncBiDirectional.getText());

 propSync.setProperty("syncInterval",syncInterval_TextField.

getText());

//save properties to project root folder

 propSync.store(new

FileOutputStream("syncconfig.properties",true), null);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 });

 }

}

