

Acknowledgement

I wish to express deep sense of gratitude towards PTC

Software (India) Pvt. Ltd. for providing me the help

opportunity to work with the company and to provide

wonderful and challenging environment for development of

“Code Coverage Using JaCoCo”.

I would like to thank Dr. V.H. Inamdar, Director, IMCC,

Dr. Santosh Deshpande, HOD of computer department,

IMCC, Dr. Manasi Bhate, TPO of IMCC, Dr. Minakshi

More for their valuable guidance and kind co-operation

throughout the period of the work undertaken.

Kiran Shejwal

INDEX

Chapter Title Page No.

1
Chapter 1: Introduction

1.1 Company Profile 1

1.2 Existing System and Need for System 3

1.3 Scope of Work 4

1.4 Operating Environment – Hardware and 7

 Software

2
Chapter 2: Testing Environment

2.1 Objectives of System 8

2.2 User Requirements 9

2.3 Detail Description of Technology Used 10

3
Chapter 3: Analysis & Design

3.1 Entity Relationship Diagram 15

3.2 Object Diagram 16

3.3 Class Diagram 17

3.4 Use Case Diagrams 18

3.5 Module Hierarchy Diagram 22

3.6 Component Diagram 23

3.7 Testing Strategy and Test Plan 24

3.8 Module Specifications 43

3.9 User Interface Design 46

3.10 Table specifications 56

3.11 Test Procedures and Implementation 60

4
Chapter 4 : User Manual

4.1 User Manual 71

 4.2 Operations Manual 83

5 Drawbacks and Limitations 85

6 Proposed Enhancements 86

7 Conclusions 87

8 Bibliography

9
Annexures:

 Annexure 1 :User Interface Screens

 Annexure 2 : Defect Report

 Annexure 3 : All test cases

CHAPTER 1:

INTRODUCTION

1.1 Company Profile

PTC Software is at the early stages of a fundamental

transformation, marking what could be one of the most

significant disruptions to the manufacturing industry

since the Industrial Revolution. As one of the world’s

largest and fastest-growing technology companies, PTC

helps manufacturing leaders address these transformative

forces to achieve and sustain product and service

advantage.

PTC solutions for Computer Aided Design

(CAD), Product Lifecycle Management

(PLM), Application Lifecycle Management

(ALM), Service Lifecycle Management (SLM),

and Internet of Things (IoT) enable process

transformation and deliver closed-loop lifecycle

management for products and services that are

increasingly smart and connected. Our solutions help you

optimize the activities within individual functions of your

organization, and align them across your entire

1 | P a g e

http://www.ptc.com/cad
http://www.ptc.com/cad
http://www.ptc.com/cad
http://www.ptc.com/cad
http://www.ptc.com/cad
http://www.ptc.com/product-lifecycle-management
http://www.ptc.com/product-lifecycle-management
http://www.ptc.com/product-lifecycle-management
http://www.ptc.com/product-lifecycle-management
http://www.ptc.com/about
http://www.ptc.com/about
http://www.ptc.com/about
http://www.ptc.com/about
http://www.ptc.com/service-lifecycle-management
http://www.ptc.com/service-lifecycle-management
http://www.ptc.com/service-lifecycle-management
http://www.ptc.com/internet-of-things
http://www.ptc.com/internet-of-things
http://www.ptc.com/internet-of-things
http://www.ptc.com/internet-of-things

enterprise—from engineering to supply chain and

manufacturing, to sales and service.

Today, PTC works with more than 28,000 businesses

around the world to help them create, operate, and

service products in rapidly-evolving, globally distributed

manufacturing industries, including industrial equipment,

automotive, high tech and electronics, aerospace and

defence, retail, consumer, and medical devices. By

partnering with PTC, you can cultivate and exploit your

best product and services ideas in an increasingly smart

and connected world.

2 | P a g e

1.2 Existing System and Need for System

Code coverage data gives us an important insight on

how effective our tests are, what parts of our source code

are thoroughly executed. You can also look at the code

coverage report and find out specific areas of code which

are not exercised by our tests. If you are following TDD,

then you must and will be having 100% coverage. The

test early principle helps you in detecting and fixing bugs

early in the life cycle of your project. If you want your

project to be as successful as Spring, then you know what

% of coverage you need. Let's all strive to "Aim for the

highest".

Code coverage reports should be used on a daily basis

to: 1.See what percentage of tests actually test our code.

2. Improve the coverage by writing additional tests as

more functionality is added.

3 | P a g e

1.3 Scope of Work

Code coverage and test coverage metrics are both

measurements that can be useful to assess the quality of

your application code.

Code coverage is a measurement of how many

lines/blocks/arcs of your code are executed while the

tests are running. In this expert response, you'll learn how

quality assurance professionals use both of these metrics

effectively.

Coverage information has to be collected at runtime. For

this purpose, JaCoCo creates instrumented versions of

the original class definitions.

The instrumentation process happens while execution

during class loading using Java agents. There are several

different approaches to collect coverage information. For

each approach different implementation techniques are

known.

4 | P a g e

The Java agent is loaded by the application class loader.

Therefore, the classes of the agent live in the same

namespace like the application classes which can result

in clashes especially with the third party library ASM.

The JaCoCo build therefore moves all agent classes into

a unique package.

Code coverage helps in identifying the code which is not

covered by the test case execution so that we can write

the new test cases to improve the Coverage.

Code Coverage is a measurement of how many

lines/blocks/path of your code are executed while the

tests are running.

Code coverage is collected by using a specialized tool to

instrument the binaries to add tracing calls and run a full

set of tests against the instrumented product. A good tool

will give you not only the percentage of the code that is

executed, but also will allow you to drill into the data and

5 | P a g e

see exactly which lines of code were executed during

particular test.

while code coverage is a good metric of how much

testing you are doing, it is not necessarily a good metric

of how well you are testing your product. There are other

metrics you should use along with code coverage to

ensure the quality.

6 | P a g e

1.4 Operating Environment –Hardware and

Software

Client Software Requirements:

• Windows 7 64 bit

• Web Browser: IE 11, Mozilla 10.0X ESR

Client Hardware Requirements:

• RAM 2GB

• 2 processors

• 50 GB HDD for software components

Server Hardware Requirements:

• 8GB RAM

• 2 processors

• 50 GB HDD for software components

Server Software Requirements:

•Windows Server 2008 R2 64-bit

7 | P a g e

CHAPTER 2:

TESTING ENVIRONMENT

2.1 Objective of system:

Identify the dead code: After running all the defined use

cases, if the coverage output shows that if some functions

are not called, after analysing we can identify whether

the code is un-touched as no required use case exists or

code is dead code (i.e. not required)

Identify the missing test cases: Coverage output can also

be useful in identifying the extra tests (exceptional

cases), which we were missed out earlier after analysing

the coverage report.

Function and line coverage: Coverage output reports how

many functions and how may lines have been covered in

the application code. This also gives "hit" of the

functions, i.e. how many times a particular method is

been called. This gives additional information such as

which code is being accessed more.

8 | P a g e

2.2 User Requirements:

Code coverage analysis is the process of:

Finding areas of a program not exercised by a

set of test cases,

Creating additional test cases to increase

coverage, and

Determining a quantitative measure of code

coverage, which is an indirect measure of

quality.

An optional aspect of code coverage analysis

is:

Identifying redundant test cases that do not

increase coverage.

9 | P a g e

2.3 Detail Description of Technology Used:

Java: Java is a general-purpose computer programming language

that is concurrent, class-based, oriented, and

specifically designed to have as few implementation

dependencies as possible. It is intended to let application

developers "write once, run anywhere" (WORA), meaning

that compiled Java code can run on all platforms that support

Java without the need for recompilation. Java applications are

typically compiled to byte code that can run on any Java virtual

machine (JVM) regardless of computer architecture. As of 2016,

Java is one of the most popular programming languages in

use, particularly for client-server web applications, with a

reported 9 million developers. Java was originally developed

by James Gosling at Sun Microsystems (which has since

been acquired by Oracle Corporation) and released in 1995 as a

core component of Sun Microsystems' Java platform.

JaCoCo: JaCoCo is an open source toolkit for measuring

and reporting Java code coverage. JaCoCo is distributed

under the terms of the Eclipse Public License. It was

10 | P a g e

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/James_Gosling
https://en.wikipedia.org/wiki/James_Gosling
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_acquisition_by_Oracle
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/Eclipse_Public_License

developed as a replacement for EMMA under the

umbrella of the EclEmma plug-in for Eclipse.

Features

JaCoCo offers instructions, line and branch coverage. In

contrast to Clover, which requires instrumenting the

source code, JaCoCo can instrument Java byte code using

two different approaches:

like JCov on the fly while running the code

with a Java agent,

like JCov and Cobertura prior to execution

(offline)

And can be configured to store the collected

data in a file, or send it via TCP. Files from

multiple runs or code parts can be merged

easily. Unlike Cobertura and Emma it fully

supports Java 7 and Java 8.

11 | P a g e

https://en.wikipedia.org/wiki/EMMA_%28code_coverage_tool%29
https://en.wikipedia.org/wiki/Atlassian_Clover

Selenium Web Driver: Selenium is a portable software-

testing framework for web applications. Selenium

provides a record/playback tool for authoring tests

without the need to learn a test scripting language

(Selenium IDE). It also provides a test domain-specific

language (Selenese) to write tests in a number of popular

programming languages, including C#, Groovy, Java,

Perl, PHP, Python, Ruby and Scala. The tests can then

run against most modern web browsers. Selenium

deploys on Windows, Linux, and OS X platforms. It is

open-source software, released under the Apache 2.0

license: web developers can download and use it without

charge.

Selenium Web Driver is the successor to Selenium RC.

Selenium Web Driver accepts commands (sent in

Selenese, or via a Client API) and sends them to a

browser. This is implemented through a browser-specific

browser driver, which sends commands to a browser, and

retrieves results. Most browser drivers actually launch

12 | P a g e

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
https://en.wikipedia.org/wiki/Java_%28software_platform%29
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://en.wikipedia.org/wiki/Scala_%28programming_language%29
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Apache_License

and access a browser application (such as Firefox,

Chrome or Internet Explorer); there is also an Html Unit

browser driver, which simulates a browser using Html

Unit.

Jenkins: Jenkins is an open source automation server

written in Java. The project was forked from Hudson

after a dispute with Oracle. Jenkins helps to automate the

non-human part of the whole software development

process, with now common things like continuous

integration, but by further empowering teams to

implement the technical part of a Continuous Delivery. It

is a server-based system running in a servlet container

such as Apache Tomcat. It supports SCM tools including

AccuRev, CVS, Subversion, Git, Mercurial, Perforce,

Clearcase and RTC, and can execute Apache Ant,

Apache Maven and sbt based projects as well as arbitrary

shell scripts and Windows batch commands. The creator

of Jenkins is Kohsuke Kawaguchi.[3] Released under the

MIT License, Jenkins is free software.

13 | P a g e

https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/Internet_Explorer
https://en.wikipedia.org/wiki/HtmlUnit
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/Fork_%28software_development%29
https://en.wikipedia.org/wiki/Hudson_%28software%29
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_Delivery
https://en.wikipedia.org/wiki/Java_Servlet#Container_servers
https://en.wikipedia.org/wiki/Apache_Tomcat
https://en.wikipedia.org/wiki/Source_Control_Management
https://en.wikipedia.org/wiki/AccuRev_SCM
https://en.wikipedia.org/wiki/AccuRev_SCM
https://en.wikipedia.org/wiki/Subversion_%28software%29
https://en.wikipedia.org/wiki/Subversion_%28software%29
https://en.wikipedia.org/wiki/Mercurial
https://en.wikipedia.org/wiki/Mercurial
https://en.wikipedia.org/wiki/Clearcase
https://en.wikipedia.org/wiki/Rational_Team_Concert
https://en.wikipedia.org/wiki/Apache_Ant
https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Sbt
https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Batch_file
https://en.wikipedia.org/wiki/Kohsuke_Kawaguchi
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/Free_software

Builds can be triggered by various means, for example by

commit in a version control system, by scheduling via a

cron-like mechanism and by requesting a specific build

URL. It can also be triggered after the other builds in the

queue have completed. Jenkins functionality can be

extended with plugins.

14 | P a g e

https://en.wikipedia.org/wiki/Software_build
https://en.wikipedia.org/wiki/Commit_%28version_control%29
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Uniform_Resource_Locator
https://en.wikipedia.org/wiki/Plug-in_%28computing%29

CHAPTER 3:

ANALYSIS & DESIGN

3.1 Entity Relationship Diagram:

15 | P a g e

3.2 Object Diagram:

16 | P a g e

3.3 Class Diagram:

17 | P a g e

3.4 Use case Diagram of System:

18 | P a g e

3.4.1 Use case Diagram of Admin User:

19 | P a g e

3.4.2 Use case Diagram of Supplier User:

20 | P a g e

3.4.3 Use case Diagram of Customer:

21 | P a g e

3.5 Module Hierarchy Diagram:

22 | P a g e

3.6 Component Diagram

23 | P a g e

3.7 Testing Strategy and Test Plan

3.7 [1] Verification and Validation

Software Test Specification

1.0 Introduction

This section provides an overview of the entire testing

process documentation. This document describes both the

test plan and the test procedure.

1.1 Goals and objectives

“Software Testing is a process of finding defects”. A

good test case is one that has a capability of finding yet

undiscovered errors. Our test objective is to design test

processes that systematically uncover different classes of

errors and do so with minimum amount of time and

effort.

24 | P a g e

1.2 Statement of scope

Testing scope includes complete Black Box Testing

techniques. In this we are testing input & desired output

i.e. functional testing.

In case of non-functional testing, User Interface testing,

usability & performance testing is performed.

For bug fixes retesting & regression testing will be

performed against written test cases & logged defects.

Integration testing will be performed for functional point

of view.

2.0 Test Plan

This section describes the overall testing strategy and the

project management issues that are required to properly

execute effective tests.

2.1 Software to be tested

The software to be tested is identified by name.

Exclusions are noted explicitly.

25 | P a g e

2.2 Testing strategy

FlexPLM System will be tested in functional point of

view with the help of Black Box Testing Technique.

2.2.1 Unit testing

Unit is a smallest building block of software system. The

basic unit testing will be performed by developers before

releasing code of that unit. When it is available for

testing, tester test it to check if module is generating

desired output as well as it redirects user to enter valid

data.

e.g.

% Product is getting created or not.

% Create button should create & display the details of

that object.

2.2.2 Integration testing

In integration testing, system will be tested by joining 2

modules for their inter-dependencies. Critical level

integration tests are performed by integrators & rest of

26 | P a g e

the functional integration testing will be performed by

testers. In this tester checks whether data generated by

one module is properly reflected on another module.

e.g. 1) Product created from season will be listed in the

line sheet.

2.2.3 Validation testing

To maintain maximum control over the testing criteria,

all data fields will be made specified for testing purposes.

The level builder will be tested to ensure proper

communication between the interface and the database.

Valid input is saved in database and for invalid testing

appropriate error message is displayed. e.g.

3. Cost field should display error message if user enters

negative value.

4. Application prompt user if any mandatory field is

pending to update before record is saved.

27 | P a g e

2.2.4 High-order testing

After unit, validation & integration testing, all the ready

modules are integrated & tested for their correctness,

completeness & performance. This is also called as

System Testing. At the time of system testing, critical test

cases of each level are re-executed & ensured that system

is generating output as per given requirement. e.g.

• When all details are entered via different modules like

product, supplier, colourway it generates a consolidated

report in non-editable table format as per given input.

• It is also tested when all modules are integrated system

performance is well manageable.

2.3 Testing tools and environment

Testing tools are used as Integrity to prepare test cases,

its execution, defect reporting etc. Integrity is used as a

test management tool. Application & server is deployed

on server with the set configuration & then it is validated

on Mozilla Firefox, Google Chrome, Internet Explorer

browser by considering known issues. Selenium

28 | P a g e

WebDriver is used to Automate the Test Cases. JaCoCo

tool is used to find the Code Coverage report of the

System.

2.4 Test schedule

Test schedule is prepared by considering time required

for development of each module. Accordingly, tester will

execute the test cases for functional & non-functional

aspects. For testing of all module 1 person &

approximately 20 man days (i.e. 20 * 8 = 160 Hrs.) were

allocated in which tested has to execute test cases, report

defects, retest bug fixes, regress all important test cases

• complete testing for the system as a whole. Also tester

test system for User Acceptance Testing – Alpha Testing

against finalized user requirements. This testing will

ensure that system is working as per user requirements

and it is ready to go live.

29 | P a g e

3.0 Test Procedure

This section describes as detailed test procedure

including test tactics and test cases for the software.

3.1 Software to be tested Functionality Details
Functional Requirement

 • Admin

 • Other Users

1) Login • Project Manager

 • Accounts Manager

 • All the data of proposal

2) Dashboard
& other details are

displayed on dashboard.

 • Season should be created

2) Season with the given data.

 • Product should get

3) Product
created and get added to

the season.

3.2 Testing procedure

• Collection & analysis of requirements

• Identification of test scenarios

• Generating module-wise test cases

• Creating test cases to validate each field (low-level)

with valid & invalid input.

• Written test cases are executed & pass or fail result is

mentioned.

30 | P a g e

6. For failed test case defect is reported in defect

reporting template.

7. Verify if the reported bugs are fixed & retested to

ensure bug fixes & regressed to check affection to other

modules.

8. When bug is fixed that test case status is made as

“Retested – As expected” or opened if bug is not fixed

properly.

3.2.1 Unit test cases

The procedure for unit testing is described for each

software component (that will be unit tested) is

presented. This section is repeated for all components.

3.2.1.2Stubs and/or drivers for component

Not applicable

3.2.1.3 Test cases

Component: Login

Validated for all text fields with valid/invalid data

according to its length for accepting data Forgot

Password link & its functionality.

Functionality of buttons.

31 | P a g e

Component: Manage Library Objects Like Season,

Product, Colour, Specification, Document

Validated for all text fields with valid/invalid data

according to its length & data type for accepting data.

Dropdown combo’s data selection

Validation of different functional button

View displayed on pages according to set values

Functionality of breadcrumbs

Warning & confirmation messages.

UI of each webpage.

Consolidated Report generation after each details

addition.

3.2.2 Integration testing:

Modules can work individually but they may not work

together. Integration testing is done to ensure interface

integrity. The transfer of data between modules is tested.

Integration testing is done to ensure for correct output is

32 | P a g e

generated when two or more inter-dependent modules are

combined together to form system or sub-system. In

Project Management System it is ensured that data

generated by one module is displayed & can be used

successfully for input which will be used to generate

consolidated report on Manage Proposal page.

Integration testing is performed when delete operation is

used to delete proposal then related all data should be

deleted from all modules.

3.2.2.1 Testing procedure for integration:

Verify whether names generated in Manage Master

Forms are displayed on Manage Proposal > Add New

Proposal page while entering new record.

Proposal details & Purchase Order details are displayed

while entering project details.

When project is submitted corresponding invoice is

generated by system.

33 | P a g e

All the related details of proposal, purchase order, project

details 7 invoice details are displayed on Manage

Proposal > View page in non-editable table format.

When proposal is deleted, related all POs, Project details

& Invoice details will be deleted.

When project is deleted, all project data & invoice details

generated against that project will also be deleted.

In above all scenarios inter dependencies are tested when

all modules are combined.

3.2.2.2 Test cases and their purpose

Test cases are written for above scenarios just to ensure

that system will generate desired output when combined

all module together.

3.2.2.4 Expected results

Expected result for integration testing ensures that

modules are communicating in desired fashion to

generate high level output.

34 | P a g e

3.2.3 Validation testing

Validation is the process of checking “are we doing the

right job?” It is done with actual execution of the system.

Here, we are validating Project Management System

after integrating all modules. This type of testing is

performed to check if system is generating desired output

as per customer’s need when valid input is entered. Also

for invalid input, user is asked to enter valid data by

warning or error message.

3.2.3.1 Testing procedure for validation

In validation testing, considering valid & invalid input &

its desired output, test scenarios are prepared. For this

Black Box testing techniques like Equivalence Class

Partitioning, Boundary Value Analysis, and State

Transition method are used & output is validated for its

desired format. Validation testing can be done in each

level of testing like unit, integration & system testing.

35 | P a g e

3.2.3.2 Expected results

1) Application should be able to generate desired output

in well formatted manner as per customer’s requirement.

2) Application should prompt user for invalid input data

entry. Warning/Error messages should be designed in

easily understandable format.

3.2.3.3 Pass/fail criterion for all validation tests

For invalid input application should give proper error

message.

Valid input data should be saved; confirmation message

should be displayed & that data is also displayed in

proper format. All the records should be displayed in

non-editable table format in respective sections. This can

be viewed on module level also.

3.2.4 High-order testing (System Testing)

1) Functionality of buttons

2) Warning & Error messages on invalid input

entries, blank mandatory fields.

36 | P a g e

3) Reports generated – for each module

differently & consolidated.

3.2.4.1 Security testing

This tools are used to evaluate the security characteristics

of software. For to protect data confidentiality, integrity,

authentication, authorization, availability and non-

repudiation.

3.2.4.2 Performance testing

Performance testing is performed, to determine how fast

some aspect of a system performs under a particular

workload.

As per the given requirement it include following things:

What is the time requirement for any/all backend batch

processes?

For user interface how many concurrent users are

expected for each

How much time it takes for performing any operation.

Performance testing is carried out using automation tool.

37 | P a g e

3.7[2] Defect Lifecycle for project

Defect life cycle is a cycle which a defect goes through

during its lifetime. It starts when defect is found and ends

when a defect is closed, after ensuring it’s not

reproduced.

The bug has different states in the Life Cycle. The Life

cycle of the bug can be shown diagrammatically as

follows:

38 | P a g e

Bug or defect life cycle includes following steps or

status:

1. New – When the bug is identified and logged in bug

tracking tool for the first time, its state will be "NEW".

2. Open / Closed – After a QA has posted a bug, the QA

lead validates the bug. If bug is valid then he changes the

state as "OPEN" and if the bug is invalid, then the lead

changes its state to "CLOSED".

3. Assign – After QA lead changes the state as "OPEN",

he assigns the bug to corresponding developer or

developer team lead and the bug status is changed to

"ASSIGN".

4. Rejected – If the developer feels that the bug is not

valid or it has some technical limitations and cannot be

fixed, he rejects the bug. He changes the state of bug to

"REJECTED".

5. Duplicate – If the bug is logged is repeated twice or

the two bugs reported has alike results and steps to

39 | P a g e

reproduce, then one bug status is changed to

"DUPLICATE".

6. Deferred – If the development team lead decides to fix

the bug in next release due to lack of time or the priority

of the bug is low then he changes the state to

"DEFERRED", which is later changes to "ASSIGN"

when the bug is taken in consideration to be fixed.

7. In Test – Once the developer fixes the bug, he assigns

the bug to the testing team for next round of testing.

Before that he changes the state of bug to "IN TEST". It

specifies that the bug has been fixed and is released to

testing team.

8. Verified – Once the bug is fixed and the status is

changed to "IN TEST", the tester tests the bug. If the bug

is not reproducible in the software, he changes the status

to "VERIFIED".

9. Reopened – Once the bug is fixed and the status is

changed to "IN TEST", the tester tests the bug. If the bug

is reproducible in the software, he changes the status to

"REOPENED”.

40 | P a g e

10. Closed – After the bug status is changes to

"REJECTED" or "DUPLICATE" or "VERIFIED" the

QA Lead verifies the comments added by the

development or Testing team. When he is satisfied with

the comments he changes the state to "CLOSED".

In Project Management System –

Defect Life Cycle used for Project Management System

is as follows –

NEW – Tester reports bugs in the shared bug sheet with

severity. Test Lead verifies that defect & change its

status to OPEN if it is a bug or NOT A BUG if it is not a

bug or

DUPLICATE if it is previously reported or

DEFFERRED in case of not considered in this build.

Developer has access of bug sheet, so developer starts to

resolve reported open bugs as per assigned severities &

priorities.

When developer fixes any issue, the status was changed

to RESOLVED & the corresponding bug row made

41 | P a g e

coloured in light grey colour, so that tester will come to

know which bugs are resolved & need retesting.

Tester will retest & regress for the resolved issue &

change status as:

CLOSED: – If issue is successfully resolved with no

impact on other functionality.

REOPENED: – If issue is not resolved properly or

changes caused for bugs in other modules.

When status becomes CLOSED – Defect life cycle stops

there & the defect is mad coloured as Green.

When status is updated as REOPENED then step 2

onwards followed & the defect is made coloured as

Orange. At the end, all bugs will be retested to verify

there is no major bugs.

42 | P a g e

3.8 Module Specifications:

1. Product: Product can be of any type of product like

apparel, footwear etc. Product is having submodules like

Size, Measurements etc.

2. Colour: Colour or colour is a property of light as seen

by people. Colour can be created as combination of

multiple colours and solid colours etc.

3. Material: The matter from which something can be

made. Material can include but is not limited to raw and

processed material, components, parts small tools and

accessories that may be consumed directly or indirectly.

Material can have the sub modules like sources, Colour,

Images, Documents etc.

4. Document: A piece of written, printed, or electronic

matter that provides information or evidence or that

serves as an official record. Document is nothing but the

cover pages, Image pages etc.

43 | P a g e

5. Specification: A detailed description of the design and

materials used to make something. Exact statement of the

particular needs to be satisfied, or essential

characteristics that a customer requires (in a good,

material, method, process, service, system, or work) and

which a vendor must deliver. Specifications are written

usually in a manner that enables both parties (and/or an

independent certifier) to measure the degree of

conformance. They are, however, not the same as control

limits (which allow fluctuations within a range), and

conformance to them does not necessarily mean quality

(which is a predictable degree of dependability and

uniformity). Specifications are divided generally into two

main categories: (1) Performance specifications: conform

to known customer requirements such as keeping a

room's temperature within a specified range.

6. Bill of Material: The bill of materials typically

includes part names, part numbers, part revisions and the

quantities required to build an assembly.

44 | P a g e

7. Supplier: A person or organization that provides

something needed such as a product or service. This can

be of many types like vendor supplier, distributor retailer

etc.

All the above objects can be created, updated and

deleted.

45 | P a g e

3.9 User Interface Design

3.9 .1. FlexPLM Product Details Page

46 | P a g e

3.9 .2. FlexPLM Create New Document Page

47 | P a g e

3.9 .3. FlexPLM Attribute List Page

48 | P a g e

3.9.4. FlexPLM Type Manager Details Page

49 | P a g e

3.9 .5. FlexPLM Type Manager Details Page

50 | P a g e

3.9 .6. FlexPLM Type Manager New Rule Creation

Page

51 | P a g e

3.9.7. FlexPLM Season Dashboard Page

52 | P a g e

3.9.8. FlexPLM Change Overview Dashboard Page

53 | P a g e

3.9.9. FlexPLM Material/Color/Artwork Page

54 | P a g e

3.9.10. FlexPLM Find Document Page

55 | P a g e

3.10 Table Specifications

3.10.1User Object Table:

Sr.no. Field Name Data Type Key

 Constraint

1 User ID Varchar2(10) Primary key

2 User Name Varchar2(10) Not Null

3 Email Varchar2(10) Not Null

4 Org Number Number (20) Not Null

5 Org Name Varchar2(30) Not Null

3. 10.2 Product Table:

Sr.no. Field Name Data Type Key

 Constraint

1 Product ID Varchar2(10) Primary key

2 User ID Varchar2(10) Foreign key

3 Product Varchar2(20) Not Null

 Name

4 Division Varchar2(10) Not Null

5 Date Date Not Null

56 | P a g e

3.10.3 Season Table:

Sr.no. Field Name Data Type Key

 Constraint

1 Season Varchar2(20) Primary key

 Name

2 Division Varchar2(10) Not Null

3 Year Number (10) Not Null

4 Division Varchar2(10) Not Null

5 Product Type Varchar2(10) Not Null

6 Product ID Varchar2(10) Foreign keys

3.10.4 Supplier Table:

Sr.no. Field Name Data Type Key

 Constraint

1 Product ID Varchar2(10) Primary key

2 User ID Varchar2(10) Foreign key

3 Supplier Varchar2(10) Not Null

 Name

4 Supplier Type Varchar2(10) Not Null

5 Date Date Not Null

57 | P a g e

3.10.5 Colour Table:

Sr.no. Field Name Data Type Key

 Constraint

1 Colour ID Varchar2(10) Primary key

2 Colour Varchar2(10) Not Null

 Type

3 Colour Number (10) Not Null

 Name

3.11.6 Material Table:

Sr.no. Field Data Type Key

 Name Constraint

1 Material Varchar2(10) Primary key

 ID

2 Material Varchar2(10) Not Null

 Name

3 Material Varchar2(10) Not Null
 Market

 Name

4 Material Number (10) Not Null

 type

5 Product ID Varchar2(10) Foreign keys

58 | P a g e

3.10.7 BOM Table:

Sr.no. Field Data Type Key

 Name Constraint

1 BOM ID Varchar2(10) Primary key

2 BOM Varchar2(10) Not Null

 Name

3 Material Varchar2(10) Foreign key

 ID

4 Colour ID Number (10) Foreign key

3.10.8 Specification Table:

Sr.no. Field Name Data Type Key

 Constraint

1 Specification Varchar2(10) Primary

 ID key

2 Product ID Varchar2(10) Foreign

 key

3 Specification Varchar2(10) Not Null

 Name

4 Specification Varchar2(10) Not Null

 Type

59 | P a g e

3.11 Test Procedures and Implementation

1.Test Cases

61 | P a g e

62 | P a g e

63 | P a g e

64 | P a g e

65 | P a g e

66 | P a g e

67 | P a g e

1.Test Case Execution log

68 | P a g e

2.Defect Metrics

69 | P a g e

3.Defect screen along with defect

70 | P a g e

CHAPTER 4:

USER MANUAL

4.1 User Manual

4.1.1 Flex PLM

Many forward-looking companies are implementing PLM

solutions to meet strategic corporate goals and emerge

stronger as the global economy fluctuates. With profit

margins diminishing, it is more important than ever to make

smart IT investments. Today, the industry is under pressure

to deliver innovative, “trend-right” products to market faster

– without sacrificing margin or quality. Reducing cycle time

is therefore key to capturing trends that fuel consumer

demand. Achieving these goals requires collaboration across

key roles in both the enterprise and the supply chain – early

in the product development process. For the world’s top

companies in retail, footwear & apparel and consumer

products, PTC Windchill FlexPLM is the solution.

4.1.2 JaCoCo Tool: JaCoCo uses a set of different counters

to calculate coverage metrics. All these counters are derived

 71 | P a g e

from information contained in Java class files which

basically are Java byte code instructions and debug

information optionally embedded in class files. This

approach allows efficient on-the-fly instrumentation and

analysis of applications even when no source code is

available. In most cases the collected information can be

mapped back to source code and visualized down to line

level granularity. Anyhow there are limitations to this

approach. The class files have to be compiled with debug

information to calculate line level coverage and provide

source highlighting. Not all Java language constructs can be

directly compiled to corresponding byte code. In such cases

the Java compiler creates so called synthetic code which

sometimes results in unexpected code coverage results. You

can instrument your source code with JaCoCo in two ways

1. Offline Instrumentation and 2. Run time Instrumentation

72 | P a g e

4.1.2 Key Features

 Ease-of-use: designed specifically for the retail, footwear

& apparel and consumer products markets

5. Breadth of functionality: supports collaboration –

early in the product development process – between

merchandising, design, product development and sourcing

6. Depth of functionality: supports the unique requirements of

designing and manufacturing apparel, footwear, accessories,

home goods and other consumer-related products with PTC

Windchill FlexPLM, PTC customers have realized

significant improvements in cycle time, margin, product

quality and overall operational efficiency.

Built on Proven PTC Windchill Architecture:

PTC Windchill FlexPLM leverages PTC Windchill

architecture – a fully integrated platform that’s been proven in

process-intensive industries to improve the productivity of

73 | P a g e

thousands of concurrent users. Some of the many business

benefits of the software include:

• Increased operational efficiency. Enables streamlined

collaboration across a global environment, ensuring that

trend-right products get to market faster, without sacrificing

margin or quality

• Reduced costs. Provides visibility to key cost-drivers in the

product development process, enabling decision-makers to

easily identify savings

• Reduced cycle time. Impacts all roles in the product

development process. By enabling greater collaboration and

visibility across all roles, you can eliminate inefficiencies in

the product development process and ultimately reduce

cycle time

74 | P a g e

4.1.3 Capabilities:

• A centralized product repository to share and control all

forms of product development information throughout the

value chain

• A scalable, Web-based architecture that can be optimized

for maximum performance in small and large

implementations, as well as across organizational and

geographical boundaries

• A process management engine that enables administration

of seasonal calendars, milestone tracking, and supply chain

collaboration

• Direct integration with design tools such as Adobe®

Illustrator™ to increase design efficiency and allow

designers to work with familiar applications

• Easy-to-use vendor portal that allows suppliers to log in

and collaborate in real-time on core product data

75 | P a g e

4.1.4 Supported Business Processes

4.1.4.1 Calendar Management/New Product Introduction

9. Define seasonal calendars, including key product

development milestones

10. Track progress of individual products against the seasonal

calendar

4.1.4.2 Concept Development

3) Create storyboards of design trends, themes and concepts

4) Collect and control all forms of digital product data

4.1.4.3 Merchandise Planning

• Define business plans per financial, attribute or assortment

goals

3) Identify seasonal contribution/targets per business

objectives

• Track line development against seasonal targets

76 | P a g e

4) Create product plans containing size and colourway

matrices, indicating which combinations should be

developed

5) Communicate product plans to vendors when requesting

quotes

• Leverage product plans when sending commitments to

vendors

4.1.4.4 Line Planning

6. Create your own role-based home page and

customize how the application looks based on your specific

position

7. Generate product placeholders from a merchandise plan,

either manually or automatically

• Optimize the merchandising mix across company, brands,

regions and distribution channels

10. Create line sheets and line presentation boards

11. Track actual product adoption against merchandise plans

77 | P a g e

4.1.4.5 Colour Development

• Establish and enforce colour definition using industry

standards

11. Define and regulate colour usage per seasonal palettes

12. Associate colour to material and supplier

13. Automate lab dip process

14. Integrate colour definition and quality control systems

Materials Development & Testing

5. Formalize a comprehensive materials library structure

6. Create material specifications

7. Manage materials- and supplier-specific information on

cost and quality

8. Determine materials usage – including product and

seasonal commitments

9. Manage materials testing

78 | P a g e

• Track “where-used” for materials Product Specifications

Management

• Create comprehensive product specifications, including

images, CAD data, bills-of-materials, size definition,

measurements, construction details and bills-of-labour

• Standardize points of measure and graded measurements

for apparel

7. Maintain multiple levels of the specification at the

product/colourway, size, and region and supplier level

8. Generate zip files containing both product specifications

and reports in PDF format, as well as product documents.

Easily export zip files and/or automatically store them with

products

8. Carry over best-selling products from previous seasons

79 | P a g e

• Apply multiple easy to use product-specification creation

features, including Quick Specs, Advanced Copy and

Linked Products

4.1.4.6 Change Tracking

• Track line item changes made to products, colours,

sources, cost sheets and specification data

• Identify product changes using change notification icons

• Create change tracking reports to efficiently communicate

and manage change throughout product development

Document version management

• Create multiple versions of a document, allowing them to

evolve while maintaining traceability

• Leverage document versions to describe seasons, Products,

and product specifications Sample management

• Request samples (e.g., concept, photo, prototype, fit,

production, etc.) from internal or external resources

80 | P a g e

• Evaluate and provide disposition on received samples

• Track sample status and sample statistics Supplier

management

• Maintain a database of suppliers

• Manage supplier profiles, including capabilities and

capacity, as well as social, technical and environmental

compliance

• Search for suppliers

4.1.4.7 Early sourcing

• Create RFQ across multiple products for multiple vendors

simultaneously

• Create costing templates that guide vendors in the bidding

process

• Manage pricing negotiations by providing vendors with

RFQ response capabilities

81 | P a g e

• Award products to one or more vendors Commitment

management

• Generate order confirmations to selected vendor(s)

containing product specifications (complete specs or Quick

Specs)

• Include product plan information (size/colourway

combinations and volumes) for one or more products with

an order confirmation

• Capture agreed-upon/negotiated costing from theft process

within the confirmation

• Leverage the order commitment as a PO, or export the data

to ERP/PO systems costing

• Generate product cost based on bill-of-materials or FOB

• Conduct multi-level costing by colour, size, and region and

distribution channel

• Create “what-if” costing scenarios.

82 | P a g e

4.2 Operations Manual / Menu Explanation:

4.2.1 My Home:

This menu provides link to direct us to the of FlexPLM

server homepage

4.2.2 My work

This menu shows the assigned work for the logged in user

4.2.3 My Favourites

This menu displays the favourite contents marked by the

logged in user

4.2.4 My season

This menu displays the different object created for the

function season

4.2.5 Libraries

This menu contains all the out of the box Flex Typed object

on which we can work i.e. Season, Product.

83 | P a g e

4.2.6 Reports:

This menu contains links for reports for specific data that

user want check.

4.2.6 Administrative:

This option available only for the Administrative user. From

this menu we can explore the Type manager section.

84 | P a g e

Drawbacks and Limitations:

JaCoCo tool is only used with the Java. It does not support

the other languages like VB, C, C++ etc. Customized reports

are not supported.

It is giving only the percentage wise code coverage report It

does not give the proper package and the classes which has

the lowest coverage.

Code coverage reports does not satisfy the user in terms of

detailed level code coverage.

It does not generate the customized reports so that we need

to implement it by our self.

85 | P a g e

Proposed Enhancements

Customised reports are created in future so that the classes

and packages having less code coverage will be highlighted

so that the tester should get to know that these areas are not

covered by the test cases and he will draft the new test cases

for that specific area.

Going further, will map the uncovered classes to the test

cases, so that we will get to know the classes and related test

cases to cover

Also with this the newly added code will be able to pick the

test cases which are candidate for automation in order to

cover and test the newly added code.

86 | P a g e

Conclusion

Code coverage and test coverage metrics are both

measurements that can be useful to assess the quality of

your application code.

Code coverage is a measurement of how many

lines/blocks/arcs of your code are executed while the tests

are running. In this expert response, you'll learn how

quality assurance professionals use both of these metrics

effectively.

Coverage information has to be collected at runtime. For

this purpose, JaCoCo creates instrumented versions of

the original class definitions.

The reports will be early analysis to expose the

uncovered code to test ensuring 100% coverage for the

project.

The code coverage will help you to do early analysis of

how much code is covered by the test case execution.

87 | P a g e

Bibliography

http://www.jacoco.org

https://en.wikipedia.org/wiki/Java_Code_C

overage_Tools

http://www.eclemma.org

https://www.codeproject.com

http://automationrhapsody.com

http://stackoverflow.com/

http://www.jacoco.org/
https://en.wikipedia.org/wiki/Java_Code_Coverage_Tools
https://en.wikipedia.org/wiki/Java_Code_Coverage_Tools
http://www.eclemma.org/
https://www.codeproject.com/
http://automationrhapsody.com/
http://stackoverflow.com/

ANNEXURES

Annexure 1: User Interface Screen

Annexure 2: Defect Report

Annexure 3: All test cases

