

Project Report

On

Enterprise Resource Planning System

For

Radon Tech

By

Rohit Mahesh Kanade

Roll Number-1812020

MCA 3rd Year

Sr. No 98, Plot 95, FL-03, Gajlaxmi Apts, Kothrud, Pune 38. | + 91 866 96 88 215

Certificate

This is to certify that Mr. Rohit Mahesh Kanade, who is pursuing his
MCA from Institute of Management and Career Courses (IMCC), has
successfully completed his project “Enterprise Resource Planning
System” with us.
The project duration is from January 2021 to May 2021.

Rohit is a sincere and hardworking person and is committed to his
work.

We wish him all the best in his future endeavors.

Regards,
On behalf of Radon Tech

Aniruddha Gohad,
CEO,
Radon Tech

Acknowledgement

I am very glad to take this opportunity to acknowledge all those who

helped me in designing, developing and successful execution of my

Project “Enterprise Resource Planning System”.

I would like to extend my thanks and gratitude to my project guide

Dr. Swapnaja Patwardhan (Assistant Professor, IMCC and Class

Co-ordinator) - Internal Guide and Mr. Suyash Joshi - External

Guide for their valuable guidance and timely assistance throughout

the development of this project.

I would also like to extend my thanks and gratitude to Dr. Santosh

Deshpande (Director, IMCC), Dr. Ravindra Vaidya (HOD,

IMCC) and Dr. Manasi Bhate (Head – Training and Placement,

IMCC) for their constant help and support.

Last but not the least, I would like to thank all the teaching and non-

teaching faculties for their cooperation.

- Rohit Kanade

INDEX

Sr. No. Topic Page No.

1 Chapter 1 : Introduction

 1.1 Company Profile 1

 1.2 Existing System and Need for System 3

 1.3 Scope of Work 5

 1.4 Operating Environment – Hardware

and Software

6

 1.5 Detail Description of Technology Used

7

2 Chapter 2 : Proposed system

 2.1 Proposed System 17

 2.2 Objectives of System 18

 2.3 User Requirements 19

3 Chapter 3 : Analysis & Design

 3.1 Object Diagram 21

 3.2 Class Diagram 22

 3.3 Use Case Diagrams 23

 3.4 Activity Diagrams 30

 3.5 Sequence Diagrams 36

 3.6 Entity Relationship Diagram 48

 3.7 Module Hierarchy Diagram 49

 3.8 Component Diagram 50

 3.9 Deployment Diagram 51

 3.10 Module Specifications 52

 3.12 Web Site Map Diagram 54

 3.13 User Interface Design 55

 3.14 Data Dictionary 65

 3.15 Table specifications 69

 3.16 Test Procedures and Implementation 73

4 CHAPTER 4 : USER MANUAL

 4.1 User Manual 83

 4.2 Operations Manual / Menu Explanation 94

 4.3 Program Specifications / Flow Charts 98

5 Drawbacks and Limitations 108

6 Proposed Enhancements 109

7 Conclusions 110

8 Bibliography 113

9 ANNEXURES :

 ANNEXURE 1:USER INTERFACE

SCREENS

 ANNEXURE 2 : OUTPUT REPORTS

WITH DATA

 ANNEXURE 3 : SAMPLE PROGRAM

CODE

Chapter 1 - Introduction

1

1.1 Company Profile

Radon tech is a software company specializing in web and mobile

applications development. Radon Tech delivers products using latest

and cutting-edge technology stack.

What Radon Tech Do?

Radon Tech takes care of client’s products with keeping user

experience, maintainability and performance mind.

Radon tech mainly works on:

 Web Development

 Mobile Applications

Front end:

React, Angular and Vue

 Back end:

Node, Golang and .NET Core coupled with SQL and NoSQL

databases

2

Mobile:

Flutter, Dart,

Mission:

Radon Tech’s mission is to provide customer a specialized, reliable,

high-quality, sophisticated services with cost saving. Our customer

must experience that working with Radon Tech is more professional,

less risky way to develop and implement project than working

completely in-house.

Solutions:

Radon Tech envelops information solutions that enable your business

users to access content from any source, seamlessly delivered to any

device and with minimal disruption to your existing systems.

3

1.2 Existing System and Need for System

Existing System:

The process of Receiving orders and delivering products and keeping

track of status is done manually

In the manual existing system following processes are done:

 Once client places their order it is entered manually in a book

 Order details are passed to the workers manually

 Once the order is sent to production to check its status, a person

has to manually go to the factory and enquire the status of that

specific order

 Inventory/Store is also handled manually where the data is

maintained in a book which is manually entered

Need for System:

Since the current system is manual there are problems being faced by

the Company:

 They have to keep details of every purchase order which again has

a list of items in it which becomes very hard to maintain manually

 In manual process the status of order, moving the order to

production and then to the store, everything is done manually

4

 Keeping records becomes a task as space is required to store all

the paper on which data is entered manually

 To get any info such as order status, inventory status a person has

to physically go and get the information from warehouse/factory

 Manual process is more time consuming than the automated

system and reduces overall efficiency

5

1.3 Scope of work

Proposed system is to be implemented for the organization and

deployed on their own internal server only which can be accessed

within the organization only

The Scope of system can be discussed with the help of the following

points:

 Displaying received order and related data in the system

 Editing purchase order data

 Searching purchase order data using specific filters

 Displaying the items that are in-production and are pending

production

 Updating status of the order to keep track of the progress

 Controlling and tracking items sent to production

 Keeping track of produced items and adding items to the inventory

 Displaying all items that have finished production

6

1.4 Operating Environment-Hardware and Software

Hardware:

 Processor : Intel core i3 processor(Dual-core)

 RAM : 4GB

 Hard Disk : 25GB

Software:

Client Side:

 Operating System : windows 7 and above(64 bit)

 Any modern web browser(chrome,firefox etc)

Server Side:

 Node

7

1.5 Detail description of Technology Used:

 Frontend- React.Js using TypeScript

 Backend- Node.Js using Express framework and TypeScript

 Database- MongoDB

React:

React is a front-end library developed by Facebook. It is used for

handling the view layer for web and mobile apps. ReactJS allows us

to create reusable UI components. It is currently one of the most

popular JavaScript libraries and has a strong foundation and large

community behind it.

ReactJS is JavaScript library used for building reusable UI

components. According to React official documentation, following is

the definition −

React is a library for building composable user interfaces. It

encourages the creation of reusable UI components, which present

data that changes over time. Lots of people use React as the V in

MVC. React abstracts away the DOM from you, offering a simpler

programming model and better performance. React can also render on

8

the server using Node, and it can power native apps using React

Native. React implements one-way reactive data flow, which reduces

the boilerplate and is easier to reason about than traditional data

binding.

 React Features:

 JSX − JSX is JavaScript syntax extension. It isn't necessary

to use JSX in React development, but it is recommended.

 Components − React is all about components. You need to

think of everything as a component. This will help you

maintain the code when working on larger scale projects.

 Unidirectional data flow and Flux − React implements one-

way data flow which makes it easy to reason about your app.

Flux is a pattern that helps keeping your data unidirectional.

 License − React is licensed under the Facebook Inc.

Documentation is licensed under CC BY 4.0.

React Advantages

 Uses virtual DOM which is a JavaScript object. This will

improve apps performance, since JavaScript virtual DOM is

faster than the regular DOM.

9

 Can be used on client and server side as well as with other

frameworks.

 Component and data patterns improve readability, which

helps to maintain larger apps.

React Limitations

 Covers only the view layer of the app, hence you still need

to choose other technologies to get a complete tooling set for

development.

 Uses inline templating and JSX, which might seem awkward

to some developers.

NodeJs:

Node.js is a server-side platform built on Google Chrome's JavaScript

Engine (V8 Engine). Node.js was developed by Ryan Dahl in 2009

and its latest version is v14.17.0(LTS).

Node.js is an open source, cross-platform runtime environment for

developing server-side and networking applications. Node.js

10

applications are written in JavaScript, and can be run within the

Node.js runtime on OS X, Microsoft Windows, and Linux.

Node.js also provides a rich library of various JavaScript modules

which simplifies the development of web applications using Node.js

to a great extent.

Features of Node.js

Following are some of the important features that make Node.js the

first choice of software architects.

 Asynchronous and Event Driven − All APIs of Node.js

library are asynchronous, that is, non-blocking. It essentially

means a Node.js based server never waits for an API to return

data. The server moves to the next API after calling it and a

notification mechanism of Events of Node.js helps the server

to get a response from the previous API call.

 Very Fast − Being built on Google Chrome's V8 JavaScript

Engine, Node.js library is very fast in code execution.

 Single Threaded but Highly Scalable − Node.js uses a single

threaded model with event looping. Event mechanism helps the

server to respond in a non-blocking way and makes the server

highly scalable as opposed to traditional servers which create

11

limited threads to handle requests. Node.js uses a single

threaded program and the same program can provide service to

a much larger number of requests than traditional servers like

Apache HTTP Server.

 No Buffering − Node.js applications never buffer any data.

These applications simply output the data in chunks.

 License − Node.js is released under the MIT license

TypeScript:

By definition, “TypeScript is JavaScript for application-scale

development.”

TypeScript is a strongly typed, object oriented, compiled language. It

was designed by Anders Hejlsberg (designer of C#) at Microsoft.

TypeScript is both a language and a set of tools. TypeScript is a typed

superset of JavaScript compiled to JavaScript. In other words,

TypeScript is JavaScript plus some additional features.

12

Features of TypeScript:

TypeScript is just JavaScript. TypeScript starts with JavaScript and

ends with JavaScript. Typescript adopts the basic building blocks of

your program from JavaScript. Hence, you only need to know

JavaScript to use TypeScript. All TypeScript code is converted into

its JavaScript equivalent for the purpose of execution.

TypeScript supports other JS libraries. Compiled TypeScript can

be consumed from any JavaScript code. TypeScript-generated

JavaScript can reuse all of the existing JavaScript frameworks, tools,

and libraries.

JavaScript is TypeScript. This means that any valid .js file can be

renamed to .ts and compiled with other TypeScript files.

TypeScript is portable. TypeScript is portable across browsers,

devices, and operating systems. It can run on any environment that

JavaScript runs on. Unlike its counterparts, TypeScript doesn’t need

a dedicated VM or a specific runtime environment to execute.

13

Why Use TypeScript?

TypeScript is superior to its other counterparts like CoffeeScript and

Dart programming languages in a way that TypeScript is extended

JavaScript. In contrast, languages like Dart, CoffeeScript are new

languages in themselves and require language-specific execution

environment.

The benefits of TypeScript include −

 Compilation − JavaScript is an interpreted language. Hence, it

needs to be run to test that it is valid. It means you write all the codes

just to find no output, in case there is an error. Hence, you have to

spend hours trying to find bugs in the code. The TypeScript transpiler

provides the error-checking feature. TypeScript will compile the code

and generate compilation errors, if it finds some sort of syntax errors.

This helps to highlight errors before the script is run.

 Strong Static Typing − JavaScript is not strongly typed.

TypeScript comes with an optional static typing and type inference

system through the TLS (TypeScript Language Service). The type of

a variable, declared with no type, may be inferred by the TLS based

on its value.

 TypeScript supports type definitions for existing JavaScript

14

libraries. TypeScript Definition file (with .d.ts extension) provides

definition for external JavaScript libraries. Hence, TypeScript code

can contain these libraries.

 TypeScript supports Object Oriented Programming concepts

like classes, interfaces, inheritance, etc.

MongoDB:

MongoDB is an open-source document database and leading NoSQL

database. MongoDB is written in C++.It is a cross-platform,

document oriented database that provides, high performance, high

availability, and easy scalability. MongoDB works on concept of

collection and document.

Advantages of MongoDB over RDBMS:

 Schema less − MongoDB is a document database in which

one collection holds different documents. Number of fields,

content and size of the document can differ from one document

to another.

 Structure of a single object is clear.

 No complex joins.

 Deep query-ability. MongoDB supports dynamic queries on

15

documents using a document-based query language that's

nearly as powerful as SQL.

 Tuning.

 Ease of scale-out − MongoDB is easy to scale.

 Conversion/mapping of application objects to database

objects not needed.

 Uses internal memory for storing the (windowed) working

set, enabling faster access of data.

Why Use MongoDB?

 Document Oriented Storage − Data is stored in the form of

JSON style documents.

 Index on any attribute

 Replication and high availability

 Auto-Sharding

 Rich queries

 Fast in-place updates

16

 Professional support by MongoDB

Where to Use MongoDB?

 Big Data

 Content Management and Delivery

 Mobile and Social Infrastructure

 User Data Management

 Data Hub

Chapter 2 - Proposed System

17

2.1 Proposed system:

ERP(Enterprise Resource Management) system is a web based

application designed to ease the process of receiving orders from

customers/clients and enabling easier communication between

Company's front desk handlers and Factory management staff

This ERP system is designed to manage, maintain and access the

information of the Orders easily without accessing any book

records/files.

The main purpose is to make Resource management of the

organization hassle free , efficient and easier to maintain

End users of this application will be only employees of that

organization which are:

 Office area workers

 Factory workers

18

2.2 Objectives of System:

Because of the process being entirely manual there are issues which

the organization faces due to lack of easy management

Having a centralized system will eliminate most of these problems by

providing essential features like:

 No manual book keeping work for any process will be there.

 Managing inventory and keeping track of it will become easier,

which will help to gather information and approve orders faster

 It will be easier for organization to keep track of received orders,

status of orders in production and dispatched orders

 User interfaces are designed in such a way that end users should

not need to learn any new thing to handle the system.

 Maintaining records and history should be strong enough and

flexible to handle large amount of data.

 Less possibility of faulty data due to strong validations

implemented both on front end and backend

19

2.3 User Requirements:

Navigation:

Website navigation will be done using a sidebar which will include

the links for different pages on the website

Purchase order:

 A page of existing purchase orders having filters and

pagination

 User is able to delete a purchase order

 Clicking on the edit button will route to the edit purchase order

page

 Fields are populated with the data of the selected purchase

order and a table is displayed which includes the items and

their details in the purchase order

 User is able to edit and delete every item of the purchase order

 User is also able to add new items to the purchase order

Production:

 This page will have 2 sections which are, pending production

and In-production which will display items according to their

20

status

 Once the item is ready, the finished details are filled using a

form and the item is sent to the store

Store:

 Store will display items which have finished production

 User is able to select items and create a dispatch list

Chapter 3 – Analysis and Design

21

3.1 Object Diagram

22

3.2 Class Diagram

23

3.3 Use Case Diagram

24

25

26

27

28

29

30

3.4 Activity Diagrams

31

32

33

34

35

36

3.5 Sequence Diagram

37

38

39

40

41

42

43

44

45

46

47

48

3.6 ERD

49

3.7 Module Hierarchy diagram

50

3.8 Component Diagram

51

3.9 Deployment Diagram

52

3.10 Module Specifications

As per the module hierarchy diagram there are 3 main modules in the

project

 Order

 Production

 Store

Order

This module displays the order data. User can search for particular

order using specific filters. In addition to this user is able to delete and

edit and order

If the user wants to edit the order a new page loads with fields already

populated with order data. The items included in the order are shown

in a table where clicking on the edit item button opens a pop up form

populated with that item details where user can change the content. In

addition to this a new item can also be added in the order by clicking

on add new item button which opens a pop up form to collect data for

the new item.

53

Production

This module displays 2 tabs. One tab shows items which are yet to be

produced. User can search for particular item by using specific filters.

User can select the quantity of items to be sent into production

The other tab shows the items which are in production. Similar kind

of filters are available to search items in production. User sends

finished item to the store by clicking the send to store button which

opens a pop up form to collect information about the finished product.

Store

This module displays the finished products of an order and displays

the details on a table. These products can be searched using specific

filters.

User is able to add products to dispatch by clicking add to dispatch

button and entering quantity of products to dispatch.

54

3.11 Website Map

55

3.12 User Interface Design

Purchase Order

56

Navigation Bar

57

Edit Order

58

In Production Items

59

Items pending production

60

Store

61

Add item pop-up

62

Edit Item pop-up

63

Send to production pop-up

Add to dispatch pop-up

64

Send to store pop-up

65

3.14 Data Dictionary

SrNo Field Data Type Description

1 abbr String(2) State short form

2 actualPmWeight Number(3) Actual Weight

3 address String(50) Address of customer

4 approxPmWeight Number(3)
Weight of item

ordered

5 castWeight Number(3) Cast weight of item

6 customerID ObjectID

Primary key for

customer,Foreign key

for purchase order

table

7 customerName String(25) Name of customer

8 customerPan String(10) PAN of customer

9 finishWeight Number(3) Finished weight

10 furnaceID ObjectID

Primary key in

furnace table,foreign

key in store table

11 furnaceNumber String(10) Furnace number

12 GSTNo String(15)
GST Number of

customer

66

13 isCustomerDeleted boolean
Indicator to show if

record is deleted

14 isDispatched Boolean
Indicator that item is

in dispatch list or not

15 isItemDeleted Boolean
Indicator to show if

item is deleted

16 isPoDeleted Boolean
Indicator to show if

record is deleted

17 itemID ObjectID

Item primary

key,foreign key in

stores table

18 itemName String(25) Name of item

19 itemsList Array Array of ordered item

ObjectIDs

20 materialID ObjectID Primary key of

material table, foreign

key in Item table

21 materialName String(15) Name of material

22 operatorName String(15) Name of operator

23 pendingQuantity Number(3) Items not in

production

67

24 pmSize String(10) Size of item ordered

25 poID ObjectID Primary key for

purchase order

table,foreign key in

Item table,stores table

26 poNumber String(15) Purchase order

number

27 poReceivedDate Date(10) Date order is received

28 producedItems Array Array of stored item

ObjectIDs

29 quantity Number(3) Quantity of items

ordered

30 quantityAvailable Number(3) Number of items

available

31 quantityDispatch Number(3) Number of items

dispatched

32 quantityInProduction Number(3) Items in production

33 remarks String(25) Comments about

stored item

68

34 srno String(15) Serial number

35 stateID ObjectID Primary key of state

table,foreign key in

purchase order table

36 stateName String(20) Name of state

37 status String(10) Status of produced

item

38 storeID ObjectID Primary key in store

table

39 vendorCode String(10) Vendor code of

customer

69

3.15 Table Specifications

1)Purchase-Orders

Field Data type Width Constraint

poId ObjectID Primary key

srno String 15 Not null

poNumber String 15 Not null

poReceivedDate Date 10 Not null

itemsList Array Not null

customerID ObjectID Foreign

Key,Not null

isPoDeleted Boolean 1 Not null

70

2)Customers

Field Data type Width Constraint

customerID ObjectID Primary key

customerName String 15 Not null

address String 50 Not null

customerPan String 10 Not null

vendorCode String 10 Not null

GSTNo String 15 Not null

isCustomerDeleted Boolean 1 Not null

stateID ObjectID Foreign key

3)State

Field Data type Width Constraint

stateID ObjectID Primary key

stateName String 20 Not Null

abbr String 2 Not Null

71

4)Items

Field Data type Width Constraint

itemID ObjectID ObjectID Primary Key

itemName String 25 Not null

Quantity Number 3 Not null

pmSize String 10 Not null

approxPmWeight Number 3 Not null

pendingQuantity Number 3 Not null

quantityInProduction Number 3 Not null

quantityAvailable Number 3 Not null

quantityDispatch Number 3 Not null

producedItems Array

isItemDeleted Boolean 1 Not null

materialID ObjectID Foreign Key

poID ObjectID Foreign Key

5)Material

Field Data type Width Constraint

materialID ObjectID Primary Key

materialName String 15 Not null

72

6)Store

Field Data type Width Constraint

storeID ObjectID Primary key

operatorName String 15

remark String 25

castWeight Number 3 Not null

actualPmWeight Number 3 Not null

finishWeight Number 3 Not null

Status String 10 Not null

isDispatched Boolean 1 Not null

furnaceID ObjectID Foreign Key

poID ObjectID Foreign Key

itemID ObjectID Foreign Key

7)Furnace

Field Data type Width Constraint

furnaceID ObjectID Primary Key

furnaceNumber String 10 Not null

73

3.16 Test procedures and implementation

Software testing is a critical element of software quality assurance

and represents the ultimate review of specification, design and code

generation. It is a process of executing a program with a primary

objective of finding errors. Testing gives the guarantee that the

software does not fail and runs according to its specifications and in

the way the end user expects.

Testing will be performed by running the program using the test

data. Testing is vital to the success of the system. It will also test

whether the system identify the problem correctly.

The following software testing techniques were used in order to

uncover errors in the system:

 Unit testing

 Integration testing

Unit Testing

Unit testing is normally considered as an adjunct to the coding step.

It is the test for the small units of code, e.g. programs, modules or

procedures, in order to ensure that they perform their intended

functions. Unit testing is also done to test the data flow across a

module interface.

74

The following errors are uncovered during unit testing:

 Comparison of different data types.

 Incorrect logical operators or precedence.

 Incorrect comparison of variables.

 Improper or nonexistent loop termination.

 Improperly modified loop variable.

Integration testing

Integration testing is a systematic technique for constructing the

program structure while at the same time conducting tests to uncover

errors associated with interfacing. During this activity, unit tested

components are taken and a program structure is built as per the

design. Then incremental integration is performed on the system.

This means that programs are constructed and tested in small

increments instead of testing the entire program as a whole. This is

done because correction of errors becomes difficult in case of whole

program testing as many errors were detected and it is not easy to

correct them at one go. Thus, through incremental integration

testing, any error uncovered could be easily noted and corrected and

interfaces are tested completely.

75

Test Cases for add new item and edit item

Tes

t

No.

Description Input Expected

Results

Actual

Results

Pass/

Fail

1 Item name

should not

be null

itemName=NULL Item Name

is required

Item

Name is

require

d

Pass

2 A material

should be

selected

materialName=NU

LL

Material is

required

Materia

l is

require

d

Pass

3 Quantity

should not

be null

quantity=NULL Quantity is

required

Quantit

y is

require

d

Pass

4 PM Size

should not

be null

pmSize=NULL PM Size is

required

PM

Size is

require

d

Pass

76

5 Approx. PM

Weight

should not

be null

approxPmWeight=

NULL

Approx. PM

Weight is

required

Approx.

PM

Weight

is

require

d

Pass

6 Item name

should be

string

itemName=’pipe’ No Error No

Error

Pass

7 Material is

selected

materialName=’Ob

jectID’

No error No

error

Pass

8 Quantity

should be

integer

Quantity=8 No error No

error

Pass

9 PM Size

should be

string

pmSize=’small’ No error No

Error

Pass

10 Approx. PM

Weight

should be

float

approxPmWeight=

25.5

No Error No

Error

Pass

77

Test Cases for send to store pop-up

Test

No.

Description Input Expected

Results

Actual

Results

Pass/

Fail

1 Cast Weight

should not

be null

castWeight=N

ULL

Cast Weight

is required

Cast

Weight is

required

Pass

2 A furnace

number

should be

selected

furnaceNumbe

r=NULL

Furnace

number is

required

Furnace

number is

required

Pass

3 Operator

name can be

null

operatorName

=NULL

No Error No Error Pass

4 Remarks can

be null

Remarks=NU

LL

No Error No Error Pass

5 Finish

Weight

should not be

null

finishWeight=

NULL

Finish Weight

is required

Finish

Weight is

required

Pass

6 Status should

be selected

Status=NULL Select status Select

status

Pass

78

7 Cast Weight

should be

float

castWeight=25

.5

No Error No

Error

Pass

8 Furnace

number is

selected

furnaceNumbe

r=’F1’

No error No

error

Pass

9 Finish

Weight

should be

float

finishWeight=

25.5

No error No

Error

Pass

10 Status should

be selected

status=’OK’ No Error No

Error

Pass

79

Test Cases for Edit Purchase order

Test

No.

Description Input Expected

Results

Actual

Results

Pass/Fail

1 srNo should

not be null

srNo=NULL srNo is

required

srNo is

required

Pass

2 poID should

not be null

poID=NULL poID is

required

poID is

required

Pass

3 srNo should

not be null

srNo=”SC101” No error No

error

Pass

4 poID should

not be null

poID=”SCPOLS1” No error No

error

Pass

80

Test Cases for Send to Production

Test

No.

Description Input Expected

Results

Actual

Results

Pass/Fail

1 Enter

quantity of

items to be

sent to

production

quantity=NULL Quantity

should be

more

than 0

Quantity

should

be more

than 0

Pass

2 Enter

quantity of

items to be

sent to

production

quantity=2 No error No error Pass

81

Test Cases for Add to dispatch

Test

No.

Description Input Expected

Results

Actual

Results

Pass/Fail

1 Enter

quantity of

items to be

sent to

dispatch

quantity=NULL Quantity

should be

more

than 0

Quantity

should

be more

than 0

Pass

2 Enter

quantity of

items to be

sent to

dispatch

quantity=2 No error No error Pass

82

Integration Tests

Test

No.

Description Input Expected

Results

Actual

Results

Pass/Fail

1 Open Edit

Order Page

from

Purchase

orders page

Click edit

button of

a table

row

Fields and

item table

displayed

populated

with row

data

Fields and

item table

displayed

populated

with row

data

Pass

2 Moving

from one

page to

another

Click a

nav bar

button

Respective

page is

loaded

Respective

page is

loaded

Pass

Chapter 4 – User Manual

83

4.1 User Manual

User manual is document provided for the user to see how

computerized system works actually. It describes everything about

how the system can be used i.e. how data is to be entered in to the

controls.

Purchase Order Page

 This is the first page that loads as the web app runs. User is

also able to navigate to this page using the sidebar menu. This page

has a table that displays the orders that the company has received. The

table displays a serial number, purchase order number, date on which

an order is received and the name of the customer who has placed the

order.

84

 The table data can be filtered using the fields above the table.

As a user enters data in any of fields, data is reloaded in the table

according to the results returned from the backend. The “CLEAR

FILTERS” button clears the filtering parameters and reloads the table

as it was before applying the filters

 The table has an edit button and a delete button for every row.

Clicking on the delete button of a row a pop-up appears

asking to confirm the deletion of the record.

If clicked on “YES” button, the record is deleted and the table data

reloads.

If “NO” button is clicked the pop-up is closed.

Clicking on edit button redirects the application on the “Edit

Purchase Order” page.

85

Edit Purchase Order Page

User is able to navigate to this page only from the “Purchase

Order” page by clicking on the edit button in any row from the table.

When the page loads, order details are already populated in their

respective fields. User can change the data in any of these fields.

Clicking on “UPDATE” button updates the order data and the user is

again redirected to the “Purchase Order” page.

The details of items in the order are populated in a table below

the fields. The table has an edit button and a delete button for every

row. Clicking on the delete button of a row a pop-up appears

86

asking to confirm the deletion of the record. If clicked on “YES”

button, the record is deleted and the table data reloads.

If “NO” button is clicked the pop-up is closed.

If edit button is clicked a pop-up appears with fields

populated with the data of the selected row. Clicking on “EDIT

ITEM” updates the item data and table data is reloaded.

87

User can also add an item in the order. By clicking on “ADD

NEW ITEM” button a pop-up appears where the user can input the

new item data. By clicking on the “ADD” button, the item is added in

the order and the table is reloaded to show the updated items list.

88

Production Page

This page is used to monitor and manage the production of the items

of an order. User is able to navigate to this page from the sidebar. This

page has 2 tabs –

1)Pending Production –

When the production page loads, the “PENDING

PRODUCTION” tab is displayed by default. This tab has a table

showing the order items and their details such as item name, material,

ordered quantity, produced quantity, and pending quantity.

The table data can be filtered using the fields above the table.

As a user enters data in any of fields, data is reloaded in the table

89

according to the results returned from the backend. The “CLEAR

FILTERS” button clears the filtering parameters and reloads the table

as it was before applying the filters.

Each row in the table has a “SEND TO PRODUCTION” button.

When it is clicked a pop-up appears with one field to enter quantity of

items to send to production. Clicking on the “SEND” button updates

the item data and reloads the table.

90

2)In Production –

This tab opens after clicking on “IN PRODUCTION” tab

button. This tab has a table showing the order items that are in

production and their details such as item name, material and quantity

in production.

The table data can be filtered using the fields above the table.

As a user enters data in any of fields, data is reloaded in the table

according to the results returned from the backend. The “CLEAR

FILTERS” button clears the filtering parameters and reloads the table

as it was before applying the filters.

91

Each row in the table has a “SEND TO STORE” button. When

it is clicked a pop-up appears with input fields for information about

a finished item. Clicking on the “SEND” button sends the item to the

store and reloads the table. User is able to send only the quantity of

items that are in production

92

Store Page

User is able to navigate to this page using the sidebar menu. This page

has a table that displays the details of order items that have been

produced such as item name, order number, material, available

quantity and dispatched quantity.

The table data can be filtered using the fields above the table. As a

user enters data in any of fields, data is reloaded in the table according

to the results returned from the backend. The “CLEAR FILTERS”

button clears the filtering parameters and reloads the table as it was

before applying the filters.

93

Each row in the table has a “ADD TO DISPATCH” button. When it

is clicked a pop-up appears with one field to enter quantity of items to

send to production. Clicking on the “SEND” button adds the item to

the dispatch list and reloads the table.

94

4.2 Operations Manual

By clicking on this Hamburger icon on the top right area of the

sidebar user can access the list of pages in this application and

navigate himself

This is the edit icon, user can click on this in selective tables and

modify data of that table

This is the delete icon, user can click on this in tables where has

can delete the record/entry if he/she wishes

95

By clicking on the delete icon user is greeted with a popup displayed above

where can click on "YES" to proceed with the delete action or click on "NO"

to cancel it

User can utilize filters to filter out data according to his/her requirements,

clicking on "CLEAR FILTERS" button resets the filters

96

Inserting of data is done using pop-ups as shown above so that user is not

navigated to a new page every time

The pop-ups have 2 buttons at the bottom out of which left button is for

submitting data and right one is to Cancel the operation and close the modal

97

The tables in this application are paginated , user can change the rows per page

to view the data according to his needs, by clicking on the arrows user can

navigate the pages of the table

98

4.3 Program Specifications

1)Edit Purchase order

Module Purchase Order

Program Name Edit Purchase order

Purpose Edit data from the order

tables.

Input Details The required fields should

not be blank and the user

should provide valid data for

each field.

Output The data from the purchase

order table is updated.

99

2)Edit item

Module Purchase Order

Program Name Edit item

Purpose Edit item data from the item

table.

Input Details The required fields should

not be blank and the user

should provide valid data for

each field.

Output The data from the item table

is updated.

100

3)Add item in purchase order

Module Purchase Order

Program Name Add item order

Purpose Edit data from the order table

and add data to item table.

Input Details The required fields should

not be blank and the user

should provide valid data for

each field.

Output The data from the purchase

order table is updated and

data is added to the item

table.

101

4)Delete item from purchase order

Module Purchase Order

Program Name Delete item

Purpose Delete data from the order

table and item table.

Input Details Select item and confirm

delete

Output The data from the item table

is updated and data is

reloaded.

102

5)Delete purchase order

Module Purchase Order

Program Name Delete order

Purpose Delete data from the

purchase order table.

Input Details Select the order and confirm

delete.

Output The data from the purchase

order table is updated and

table is reloaded.

6)Filter purchase order data

Module Purchase Order

Program Name Filter purchase order

Purpose Display data according to

some input parameters.

Input Details Filter fields should be filled.

Output The data from the purchase

order table is displayed

according to applied filters.

103

7)Send to production

Module Production

Program Name Send to production

Purpose Send certain quantity of

items to production.

Input Details Input quantity of items to

send to production.

Output The data from the purchase

order table is updated and

table is reloaded.

8)Filter items pending production data

Module Production

Program Name Filter items pending

production

Purpose Display data according to

some input parameters.

Input Details Filter fields should be filled.

Output The data from the items

pending production is

displayed according to

applied filters.

104

9)Send to Store

Module Production

Program Name Send to store

Purpose Send certain quantity of

items to store.

Input Details The required fields should

not be blank and the user

should provide valid data for

each field

Output The data from the items in

production table is updated

and table is reloaded.

105

10)Filter items pending production data

Module Production

Program Name Filter items in production

Purpose Display data according to

some input parameters.

Input Details Filter fields should be filled.

Output The data from the items in

production is displayed

according to applied filters.

106

11)Add to dispatch

Module Store

Program Name Add to dispatch

Purpose Add certain quantity of items

to dispatch.

Input Details The required fields should

not be blank and the user

should provide valid data for

each field

Output The data from the store table

is updated and table is

reloaded.

107

12)Filter store table data

Module Store

Program Name Filter store table data

Purpose Display data according to

some input parameters.

Input Details Filter fields should be filled.

Output The data from the items in

production is displayed

according to applied filters.

108

Drawbacks and Limitations

1)This system is made to be deployed internally and to be used by the

company staff because of this the customers cannot place orders

online, that process still has to be done by physically visiting the

company

2)There is no Authentication or Authorization. Even though this

application is going to be used by the company staff, a person with

insufficient knowledge or bad intentions can tamper with the data

3)The application does not have internet connectivity. So machine

failure may lead to data loss if it is not backed up

109

Proposed Enhancements

1)Add Authentication and Authorization

2)Add separate customer module so that customer can login from

anywhere and place orders

3)Add a backup system which backs up data frequently

4)Application will be updated as per user feedback

110

Conclusions

The requirements stated by the client have been addressed in this

application. The application includes the following

1) Purchase Order Page

A list of purchase orders with fields SrNo, PO Number, Customer

Name and Date PO Received is displayed in a table which is paginated

with default 10 rows per page. Filters can be applied on the same fields

to sort the data using them as parameters. Users are able to change

page size to [10, 20, 30, 50, 100]. On clicking the delete button the

PO is marked as deleted and not shown in the PO list. On clicking the

edit button the user is directed to the Edit PO

page.

2)Edit PO Page:

The user is able to input SrNo, PO Number, Customer Name and Date

PO Received. Clicking the “Update” button will update these fields.

On clicking the Add Item button a pop up is displayed to the user with

the fields Item name, Material, Quantity, P/M Size, Approx P/M

weight, Test bar. On clicking the Add button the item is added to the

Item List. The Item List has the same column as Add Item Popup with

one extra column where Delete and Edit Icons will be present for each

item. On clicking Delete the item is be marked as deleted and removed

111

from the Item List. On clicking the edit button, the same popup is

opened with values prefilled, the button Add will now have the label

‘Update’.

3) Production page:

This page has 2 tabs at the top

1. Pending Production

2. In-Production

Pending Production

This tab displays a list of all the items from all the POs who are

yet to be sent to production. If the pending quantity is 0 the item has

been produced/Manufactured and will not be shown here.

The grid will have these columns PO Number, Item name, Material,

Ordered Quantity, Produced Quantity, Pending Quantity, Send to

Production Button. The grid will be filterable on PO Number, Item

Name, Material. On clicking the ‘Send to Production’ the user is asked

to input the quantity sent to production.

In-Production

This tab displays a list of all the items from all the POs who are in

production. The grid will have these columns PO Number, Item name,

Material, Ordered Quantity, Produced Quantity, Pending Quantity,

Send to Store Button. The grid will be filterable on PO Number, Item

112

Name, Material. On clicking the ‘Send to store’ a pop up is displayed

with the following fields Cast weight, Furnace Number, Operator

Name, Actual P/M Weight, Finish Weight, Status [OK/ REJECTED],

Remarks.

4) Stores Page

The stores page will have all the items produced in a grid with the

columns Item Name, Material, PO No, Quantity available, Quantity

dispatched, Add to dispatch Button. The grid will be filterable on

columns Item Name, PO Number and Material. On clicking Add to

dispatch the item will be added to the current dispatch list and

the user will be asked to enter the quantity of dispatched items

113

 Bibliography

Websites:

 https://www.nodejs.org/en/

 https://www.mongoosejs.com/docs/guide.html

 https://www.stackoverflow.com/tags/node.js

 https://www.reactjs.org/

 https://www.github.com/nodejs

 https://github.com/reactjs

 https://www.w3schools.com

Books:

 Advanced Internet Technologies – Techmax Publications

ANNEXURE 1

USER INTERFACE SCREEN

Purchase Order Page

Edit PO Page

Add new item

Edit PO Item

Items pending production

Items being sent to production

Items in production

Add to store

Store page

Add to dispatch

ANNEXURE 2

Output Reports with Data

Purchase Order Report

Items Pending Production Report

Items in production report

Stores Report

ANNEXURE 3

SAMPLE PROGRAM CODE

1)edit-item-modal.tsx

import Modal from "../../../components/modal-component/modal-

component";

import { useForm, Controller } from "react-hook-form";

import { useState } from "react";

import { Button, Select, MenuItem } from "@material-ui/core";

import TextField from "@material-ui/core/TextField";

import FormControlLabel from "@material-

ui/core/FormControlLabel";

import Checkbox from "@material-ui/core/Checkbox";

import { useDispatch } from "react-redux";

import { editItemAction } from "../purchase-order.action";

import AlertDialog from "../../../components/alert-component/alert-

component";

const EditItemModal = (props: any) => {

 const dispatch = useDispatch();

 const [itemEditedAlertState, setItemEditedAlertState] =

useState(false);

 const closeAlert = () => {

 setItemEditedAlertState(false);

 };

 const modalSubmit = async (data: any) => {

 props.passedRowData.itemsList[props.rowIndex] = {

 ...props.passedRowData.itemsList[props.rowIndex],

 itemName: data.itemName,

 quantity: data.quantity,

 approxPmWeight: data.approxPmWeight,

 pmSize: data.pmSize,

 };

 const selectedMaterial = data.material.split("_");

 props.passedRowData.itemsList[props.rowIndex].material = {

 ...props.passedRowData.itemsList[props.rowIndex].material,

 _id: selectedMaterial[0],

 materialName: selectedMaterial[1],

 };

 if (props.itemData._id) {

 data._id = props.itemData._id;

 dispatch(editItemAction({ ...data, material: selectedMaterial[0]

},props.passedRowData._id));

 }

 props.modalHandler();

 setItemEditedAlertState(true);

 };

 const { register, errors, control, handleSubmit } = useForm();

 return (

 <div>

 <Modal modalState={props.modalState}

modalHandler={props.modalHandler}>

 <h2>Edit Item</h2>

 <form

 key={2}

 onSubmit={handleSubmit(modalSubmit)}

 className="editItem-form"

 >

 <TextField

 className="editItemFields"

 type="text"

 placeholder="Item Name"

 name="itemName"

 defaultValue={props.itemData.itemName}

 inputRef={register({

 required: "Item Name is required",

 })}

 />

 {errors.itemName && <p>{errors.itemName.message}</p>}

 <Controller

 as={

 <Select className="editItemFields" required>

 <MenuItem value="" disabled>

 Material

 </MenuItem>

 {props.dropDownData.map((material: any) => (

 <MenuItem

 key={material._id}

 value={`${material._id}_${material.materialName}`}

 >

 {material.materialName}

 </MenuItem>

))}

 </Select>

 }

 name="material"

 rules={{ required: "Material Name is required" }}

 control={control}

defaultValue={`${props.itemData.material?._id}_${props.itemData.

material?.materialName}`}

 />

 <TextField

 className="editItemFields"

 type="number"

 placeholder="Quantity"

 name="quantity"

 defaultValue={props.itemData.quantity}

 inputRef={register({

 required: "Quantity is required",

 })}

 />

 {errors.quantity && <p>{errors.quantity.message}</p>}

 <TextField

 className="editItemFields"

 type="text"

 placeholder="P/M Size"

 name="pmSize"

 defaultValue={props.itemData.pmSize}

 inputRef={register({

 required: "P/M Size is required",

 })}

 />

 {errors.pmSize && <p>{errors.pmSize.message}</p>}

 <TextField

 className="editItemFields"

 type="text"

 placeholder="Approx P/M Weight"

 name="approxPmWeight"

 defaultValue={props.itemData.approxPmWeight}

 inputRef={register({

 required: "Approx P/M Weight is required",

 })}

 />

 {errors.approxPmWeight &&

<p>{errors.approxPmWeight.message}</p>}

 <FormControlLabel

 className="editItemFields"

 control={

 <Checkbox

 defaultChecked={props.itemData.testBar}

 color="primary"

 name="testBar"

 inputRef={register({})}

 />

 }

 label="Test bar required"

 />

 <section>

 <Button

 type="submit"

 variant="contained"

 color="primary"

 className="editItemButton"

 >

 Edit Item

 </Button>

 <Button

 className="editItemButton"

 variant="contained"

 color="primary"

 onClick={props.modalHandler}

 >

 Cancel

 </Button>

 </section>

 </form>

 </Modal>

 <AlertDialog

 alertState={itemEditedAlertState}

 alertClose={closeAlert}

 title="Item Edited"

 content="Item edited successfully in the Item List"

 />

 </div>

);

};

export default EditItemModal;

2)purchase-order.service.ts

import {

 IPurchaseOrderDetails,

 IUpdatePurchaseOrderDetails,

} from "./purchase-order.interface";

import { IFilter, Pagination } from "../utility/app-interfaces";

import { ERROR_CODES, GlobalErrors } from "../errors/errors";

import {

 createPurchaseOrder,

 getPurchaseOrder,

 deletePurchaseOrder,

 updatePurchaseOrder,

} from "./purchase-order.repository";

import { ObjectID } from "../utility/utility";

export const createPurchaseOrderService = async (

 purchaseOrderDetails: IPurchaseOrderDetails

) => {

 purchaseOrderDetails.itemsList.forEach((item: any) => {

 item.pendingQuantity = item.quantity;

 });

 const result: any = await

createPurchaseOrder(purchaseOrderDetails);

 if (!result) {

 throw ERROR_CODES[GlobalErrors.FAILED_TO_CREATE];

 }

 return result;

};

export const getPurchaseOrderService = async (

 filters: any,

 paginationDetails: any

) => {

 const skip = paginationDetails.pages *

paginationDetails.rowsPerPage;

 const limit = paginationDetails.rowsPerPage;

 const Filters = setFilters(filters);

 const result = await getPurchaseOrder(Filters, { skip, limit });

 if (result.purchaseOrder.length === 0) {

 throw ERROR_CODES[GlobalErrors.NO_RECORD_FOUND];

 }

 const response = result.purchaseOrder.map((record: any) => {

 return {

 ...record.toObject(),

 poReceivedDate: new Date(record.poReceivedDate)

 .toISOString()

 .slice(0, 10),

 };

 });

 return {response,recordCount:result.recordCount};

};

export const deletePurchaseOrderService = async (poId: string) => {

 const result = await deletePurchaseOrder(ObjectID(poId));

 if (result.n === 0) {

 throw ERROR_CODES[GlobalErrors.FAILED_TO_DELETE];

 }

 return result;

};

export const udatePurchaseOrderService = async (

 purchaseOrderDataToUpdate: IUpdatePurchaseOrderDetails,

 poId: string

) => {

 const result = await

updatePurchaseOrder(purchaseOrderDataToUpdate, poId);

 if (result.n === 0) {

 throw ERROR_CODES[GlobalErrors.FAILED_TO_UPDATE];

 }

 return result;

};

