

 PROJECT REPORT

 ON

COURIER MANAGEMENT SYSTEM

 BY

 Janhavi Hemant Gawande

 Roll No: 1811017

 MCA 3

Certificate from guide

 Acknowledgement

I am very glad to take this opportunity to acknowledge all those who

helped me in designing, developing and successful execution of my

Project “Courier Management System”.

I would like to extend my thanks and gratitude to my project guide Mrs.

Jayashree Patil – Internal Guide for their valuable guidance and timely

assistance throughout the development of this project.

I would also like to extend my thanks and gratitude to Dr. Santosh

Deshpande (Director, IMCC), Dr. Ravindra Vaidya (HOD, IMCC),

Dr. Manasi Bhate (Head – Training and Placement, IMCC) for their

constant help and support.

Last but not the least, I would like to thank all the teaching and non-

teaching faculties for their cooperation.

- Janhavi Gawande

 INDEX

 Sr No Name Of Topic Page No

 1 Chapter 1: Introduction 6-20

 1.2 Existing System and Need for System 7-8

 1.3 Scope of work 9-12

 1.4 Operating Environment – Hardware and

Software

 13

 1.5 Detail Description of Technology Used 14-20

 2 Chapter 2: Proposed System 21-25

 2.1 Proposed System 22-23

 2.2 Objectives Of System 24

 2.3 User Requirements 25

 3 Chapter 3: Analysis & Design 26-75

 3.1 Object Diagram 27

 3.2 Class Diagram 28

 3.3 Use Case Diagrams 29-31

 3.4 Activity Diagrams 32-33

 3.5 Sequence Diagrams 34-35

 3.6 Entity Relationship Diagram 36

 3.7 Module Hierarchy Diagram 37

 3.8 Component Diagram 38

 3.9 Deployement Diagram 39

 3.10 Module Specifications 40-42

 3.13 User Interface Design 43-49

 3.14 Data Dictionary 50-58

 3.15 Table Specifications 59-62

 3.16 Test Procedures and Implementation 63-75

 4 Chapter 4: User Manual 76-88

 4.1 User Manual 77-82

 4.2 Operations Manual 83

 4.3 Program Specifications 84-88

 5 Drawbacks and Limitations 89

 6 Proposed Enhacements 90

 7 Conclusions 91

 8 Bibliography 92

 9 ANNEXURES : 93-143

 ANNEXURE 1 : USER INTERFACE SCREENS 94-116

 ANNEXURE 2 : OUTPUT REPORTS WITH

DATA
 117-120

 ANNEXURE 3 : SAMPLE PROGRAM CODE 121-143

CHAPTER 1

 INTRODUCTION

1.2 Existing System and Need for System

The existing system is a manual one where users are maintaining

ledgers, books, etc to store information like booking details, delivery

particulars, details of receivers, customer information as well as

employee information. It is very difficult to maintain historical data.

More manual hours are needed to generate required reports. Also it is a

tedious task to manage historical data which needs more space. The

customers who book their courier do not have complete details about the

package as there is no tracking system used to track the package. As

everything is done manually tracking of the package and informing it to

the sender as well as the receiver becomes difficult.

To avoid all these problems of the existing system there was a need to

develop a fully computerised system where the information is stored in

servers and databases rather than manually entering the information.

With the help of the computerised system users can easily track their

courier, enter their details on their own through the

registration page, book a courier and manage their data efficiently.

Also the employees working for the company can also enter their own

details and check details of other courier bookings done by customer

and regularly update the database. This reduces the overall time in

courier management process.

1.3 Scope of Work

Courier management application will be a comprehensive and complete

application wherein the system will be able to manage all its operations

and also manage their employees, manage delivery information, all

registered consignments or packages, manage customer related

information and provide necessary information to the same as

notifications when he or she logs in to check the status of booked

package or consignment.

The main objective of this project is to build a user friendly webs

application so that the customers can easily view delivery status of the

package and track their package.

The project will consist of different modules like admin, customer,

employee . Each module will have its own functionality and will work

accordingly.

Following are the modules and their functionalities:

1) Admin

 This Module will have the option to first save data related to the systems

and then add departments in the company.

 In the registration process admin will create the logins too for the

employees who can thereafter login to the application.The employees

will be added according to their branches.

 Admin will generate reports and maintain the same.

 Admin will add different branches and can update delete the branches

accordingly.

Business Rules:

 Only admin can add the employees according to their respective branch.

 Only he will have the authority to access all the databases related to the

system.

2) Customer

 User can view the current delivery status of his parcel by

tracking/reference number and also view the different branches of

Courier Company.

 The customers are allowed to make partial payments for their courier as

well.

Business Rules:

 Customer can send the courier only within the specified weight

parameters.

 Cancellation can be done only within 24 hours of booking.

 Customers can set their delivery address only within the specified cities

in the website.

3)Employee

 This module will be available for Managers and executives and other

employees of the system.

 Executives once logged can update the status of delivery.

 Managers once logged in can view the status of all packages that are

being managed.

 Employees will be responsible for sorting the couriers according to their

type.

Business Rules:

 They can approve cancellation request made by the customer.

 Update the delivery status.

1.4 Operating Environment-Hardware and Software

Hardware Requirements:

Processor: Intel Core (i3)

Hard Disk: Minimum 1GB

RAM: 4 GB

Connectivity: Internet connection is must.

Software Requirements:

Operating System: Windows 10

Front end: HTML, CSS, Bootstrap, JavaScript, PHP.

Back end: MySQL 5.1

1.5 Detail Description of Technologies Used:

HTML:

Short form for Hyper Text Markup Language, the authoring language

used to create documents on the World Wide Web. HTML is similar to

SGML, although it is not a strict subset.

HTML defines the structure and layout of a Web document by using a

variety of tags and attributes. The correct structure for an HTML

document starts with <Html> <Head>(enter here what document is

about) <Body> and ends with </Body></Html>. All the information

you'd like to include in your Web page fits in between the <Body> and

</Body> tags.

There are hundreds of other tags used to format and layout the

information in a Web page. Tags are also used to specify hypertext

links. These allow Web developers to direct users to other Web pages

with only a click of the mouse on either an image or words.

The web has gone through many changes over the past few decades, but

HTML has always been the fundamental language used to develop web

pages. Interestingly, while websites have become more advanced and

interactive, HTML has actually gotten simpler. If you compare the

source of an HTML5 page with a similar page written in HTML 4.01 or

XHTML 1.0, the HTML5 page would probably contain less code. This

is because modern HTML relies on Cascading Style Sheets or

JavaScript to format nearly all the elements within a page.

CSS:

Short Form for Cascading Style Sheet .CSS are used to format the

layout of Web pages. They can be used to define text styles, table sizes,

and other aspects of Web pages that previously could only be defined in

a page's HTML.

 CSS helps Web developers create a uniform look across several pages

of a Web site. Instead of defining the style of each table and each block

of text within a page's HTML, commonly used styles need to be defined

only once in a CSS document. Once the style is defined in CSS, it can

be used by any page that references the CSS file. Plus, CSS makes it

easy to change styles across several pages at once. For example, a Web

developer may want to increase the default text size from 10pt to 12pt

for fifty pages of a Web site. If the pages all reference the same style

sheet, the text size only needs to be changed on the style sheet and all

the pages will show the larger text.

While CSS is great for creating text styles, it is helpful for formatting

other aspects of Web page layout as well. For example, CSS can be used

to define the cell padding of table cells, the style, thickness, and colour

of a table's border, and the padding around images or other objects. CSS

gives Web developers more exact control over how Web pages will look

than HTML does. This is why most Web pages today incorporate CSS.

JAVASCRIPT:

JavaScript is a programming language commonly used in web

development. It was originally developed by Netscape as a means to add

dynamic and interactive elements to websites. While JavaScript is

influenced by Java, the syntax is more similar to C and is based on

ECMA Script, a scripting language developed by Sun Microsystems.

JavaScript is a client-side scripting language, which means the source

code is processed by the client's web browser rather than on the web

server. This means JavaScript functions can run after a webpage has

loaded without communicating with the server. For example, a

JavaScript function may check a web form before it is submitted to

make sure all the required fields have been filled out. The JavaScript

code can produce an error message before any information is actually

transmitted to the server.

Like server-side scripting languages, such as PHP and ASP, JavaScript

code can be inserted anywhere within the HTML of a webpage.

However, only the output of server-side code is displayed in the HTML,

while JavaScript code remains fully visible in the source of the

webpage. It can also be referenced in a separate JavaScript file, which

may also be viewed in a browser.

JavaScript functions can be called within <script> tags or when specific

events take place. Examples include onClick, onMouseDown,

onMouseUp, onKeyDown, onKeyUp, onFocus, onBlur, onSubmit, and

many others. While standard JavaScript is still used for performing basic

client-side functions, many web developers now prefer to use JavaScript

libraries like jQuery to add more advanced dynamic elements to

websites.

PHP:

Stands for Hypertext Preprocessor. PHP is a HTML embedded Web

scripting language. This means PHP code can be inserted into the

HTML of a Web page. When a PHP page is accessed, the PHP code is

read or parsed by the server the page resides on. The output from the

PHP functions on the page is typically returned as HTML code, which

can be read by the browser. Because the PHP code is transformed into

HTML before the page is loaded, users cannot view the PHP code on a

page. This make PHP pages secure enough to access databases and other

secure information.

A lot of the syntax of PHP is borrowed from other languages such as C,

Java and Perl. However, PHP has a number of unique features and

specific functions as well. The goal of the language is to allow Web

developers to write dynamically generated pages quickly and easily.

PHP is also great for creating database-driven Web sites.

BOOTSTRAP:

Bootstrap, or Bootstrapping, is a verb that comes from the saying, "to

pull oneself up by his bootstraps." The idiom implies a person is self

sufficient, not requiring help from others. Similarly, in the computing

world, bootstrapping describes a process that automatically loads and

executes commands.

The most fundamental form of bootstrapping is the start-up process that

takes place when you start up a computer. In fact, the term BOOT as in

booting up a computer, comes from the word Bootstrap. When you turn

on or restart a computer, it automatically loads a sequence of commands

that initializes the system, checks for hardware, and loads the operating

system. This process does not require any user input and is therefore

considered a bootstrap process.

While Bootstrapping is often associated with the system boot sequence,

it can be used by individual applications as well. For example, a

program may automatically run a series of commands when opened.

These commands may process user settings, check for updates, and load

dynamic libraries, such as DLL files. They are considered Bootstrap

processes because they run automatically as the program is starting up.

Bootstrap is also a popular web development framework used for

creating websites. It was developed by a team at Twitter and has been an

open source project since 2011. The Bootstrap framework includes CSS

styles, JavaScript libraries, and HTML files. Bootstrap provides a way

for developers to easily build responsive websites rather than designing

them from scratch.

MYSQL:

MySQL is pronounced either "My S-Q-L" or "My Sequel," is an open

source relational database management system. It is based on the

Structured Query Language (SQL), which is used for adding, removing,

and modifying information in the database. Standard SQL commands,

such as ADD, DROP, INSERT, and UPDATE can be used with

MySQL.

MySQL can be used for a variety of applications, but is most commonly

found on Web servers. A website that uses MySQL may include Web

pages that access information from a database. These pages are often

referred to as "dynamic," meaning the content of each page is generated

from a database as the page loads. Websites that use dynamic Web

pages are often referred to as database-driven websites.

Many database-driven websites that use MySQL also use a Web

scripting language like PHP to access information from the database.

MySQL commands can be incorporated into the PHP code, allowing

part or all of a Web page to be generated from database information.

Because both MySQL and PHP are both open source (meaning they are

free to download and use), the PHP/MySQL combination has become a

popular choice for database-driven websites.

 CHAPTER 2

 PROPOSED SYSTEM

2.1 Proposed System:

Courier management application will be a comprehensive and complete

application wherein the system will be able to manage all its operations

and also manage their employees, manage delivery information, all

registered consignments or packages, manage customer related

information and provide necessary information to the same when he or

she visit the site to check the status of booked package or consignment.

It will allow the addition of systems necessary information through the

admin panel. The system will also allow registration of employees

working in Courier Services directly. It will manage various

departments in system. The system will also allow adding a different

type of package or consignment that Couriers deal with. It will have

necessary reports to check datewise couriers and their respective status

and amount earned by the company in a month.

The proposed system will allow efficient tracking of all couriers and

their status effectively. The proposed system also has the functionality

of barcode scanner for displaying data related to courier including

tracking/reference number related to that courier.

The proposed system has the functionality of part payment as well for

allowing customers to make part payments for their courier. A customer

can book more than one courier at once.

Also each courier will have a unique tracking number which will be

provided to the customer.

When the customer visits the website or portal he/she do not need to

login for tracking their package. When user visits the website the user

can directly enter their tracking number of the package and know the

status of the courier as well as the dates.

2.2 Objectives of System:

The main objective of the website is to ease the process of booking and

delivery of courier in more efficient way by thus reducing time.

Following are some other objectives of the proposed system.

 Easy and fast retrieval of information.

 Customer details, book courier, view courier status, provide

feedback, logout.

 Provide courier details like package type, weight, date of booking

etc.

 Employee registration, Login, delivery management, tracking

information related to couriers.

2.3 User Requirements:

The user expects that the website should provide more precise and clear

information about the courier he/she is about to send.

Required functions are as follows:

 Admin sign up, login, add department employees, generate a

report, view feedbacks, reply to feedbacks received, logout and

delete accounts (if required).

 Customer should be able to track his courier and make part

payments as well if needed.

 Provide courier details like package type, weight, date of booking

etc.

 Employee registration, Login, delivery management, tracking

information related to couriers.

.

CHAPTER 3

 ANALYSIS AND DESIGN

3.1 Object Diagram

3.2 Class Diagram

3.3 Use case diagrams

1. Complete Use Case

2. Admin Use Case

3.Courier Tracking Use case:

3.4 Activity Diagrams

1. Admin Activity Diagram:

2. Employee Activity Diagram

3.5 Sequence Diagram

1.Admin Sequence Diagram:

2. Employee Sequence Diagram:

3.6 Entity Relationship Diagram

3.7 Module Hierarchy Diagram:

3.8 Component Diagram

3.9 Deployment Diagram

3.10 Module Specifications

1.Admin module

1. Dashboard: In this section, admin can see all detail in brief like total

courier, Total Courier Pickup, Total Shipped, Total In-transit, Total

Courier arrived at the destination, Total courier out for delivery and

Total delivered courier.

2. Branches: In this section, admin can manage branches(add and

update).

3. Staffs: In this section, admin can manage Staffs(add, update and

delete).

4. Courier: In this section, admin can view courier status and check the

courier detail which is filling by the staff of different branches.

5. Reports: In this section admin can view courier details, courier counts

and sales report according to dates.

Admin can also update his profile, change the password and recover the

password

2.Staff Module

1. Dashboard: In this section, staffs can see all detail in brief like total

courier, Total Courier Pickup, Total Shipped, Total In-transit, Total

Courier arrived at the destination, Total courier out for delivery and

Total delivered courier.

2. Add Courier: In this section, staffs fill the courier detail of parcel.

3. Status: In this section, staffs can view the courier details and them

have also right to change courier status according to current status.

4. Search Courier: In this section, staffs can search particular courier

with the help of tracking number/reference number.

Staffs can also update his profile, change the password and recover the

password.

3.Customer(User) Module

In this module, user can view the current delivery status of his parcel by

tracking/reference number and also view the different branches of

Courier Company.

3.13 User Interface Design

3.14 Data Dictionary

Sr

no

 Column Name Data Type Size Description &

Table

1. Id Integer 5 Stores Id of

users in users

table

2. FirstName Varchar 40 Stores Name of

user in users

table

3. LastName Varchar 40 Stores lastname

of users

4. Email Varchar 50 Stores email of

users in users

table

5. Password Varchar 50 Stores password

of user in users

table

6. RegDate Timestamp Stores reg date

of user in users

table

7. BranchId Integer 5 Stores branchId

of branch in

branch table

8. BranchCode Varchar 30 Stores code of

branch in branch

table

9. BranchStreet Varchar 50 Stores sreet of

branch in branch

table

10. BranchCity Varchar 50 Stores city of

branch in branch

table

11. BranchState Varchar 50 Stores state of

branch in branch

table

12. BranchPincode Varchar 30 Stores pincode

of branch

13. BranchCountry Varchar 50 Stores country

of branch

14. BranchContact Integer 10 Stores contact of

branch

15. DateCreated Timestamp Stores created

date of branch

16. CourierId Integer 5 Stores CourierId

of courier in

parcel details

table

17. TransactionNumber Varchar 20 Stores

transaction

details of courier

18. SenderName Varchar 50 Stores sender

name in parcel

details table

19. SenderContact Varchar 10 Stores contact of

sender in parcel

details table

20. SenderAddress Varchar 50 Stores address

of sender in

parcel details

table

21. SenderCity Varchar 50 Stores city of

sender in parcel

details table

22. RecipientName Varchar 50 Stores name of

recipient in

parcel details

table

23. RecipientContact Integer 10 Stores contact of

recipient in

parcel details

table

24. RecipientAddress Varchar 50 Stores address

of recipient in

parcel details

table

25. RecipientCity Varchar 50 Stores city of

recipient in

parcel details

table

26. Type Integer 2 Stores in what

type the courier

will be sent

(pickup or

delivery)

27. FromBranchId Integer 2 Stores name of

branch in type of

id as foreign key

28. ToBranchId Integer 2 Stores name of

branch in type of

id as foreign key

29. Amount Varchar 50 Stores total

amount of

courier

30. Balance Varchar 50 Stores balance

amount if any

31. AmountStatus Integer 2 Stores the status

of amount i.e

half or full paid

32. CourierDate Timestamp Stores when

courier was

booked

33. Id Integer 11 Stores tracking

id of courier in

parcel table

34. ParcelDetailsId Integer 11 Stores courierId

of courier as

foreign key

35. Reference Number Varchar 20 Stores reference

number or

tracking number

of courier

36. Type Integer 2 Stores in what

type the courier

will be sent

(pickup or

delivery)

37. ParcelWeight Varchar 20 Stores weight of

parcel in parcel

table

38. ParcelHeight Varchar 20 Stores height of

parcel in parcel

table

39. ParcelWidth Varchar 20 Stores width of

parcel in parcel

table

40. ParcelLength Varchar 20 Stores length of

parcel in parcel

table

41. Price Varchar 30 Stores individual

price of parcel in

parcel table

42. Status Varchar 50 Stores status as

of courier in

parcel table

43. DateCreated Timestamp Stores created

date of item

44. ParcelTrackingId Ineteger 12 Stores tracking

id of parcel in

parcel tracks

table

45. TrackingId Integer 10 Stores

trackingId of

parcel table as

foreign key

46. Status Integer 04 Stores status of

parcel from

parcel table

47. PaymentId Integer 05 Stores

paymentId of

parcel in

payment table

48. ParcelDetailsId Integer 5 Stores id of

parcel from

parcel details

table

49. Amount Varchar Stores amount

paid by the user

in payment table

3.15 Table Specifications

1. Users Table

Column Name Data type Size Constraint

Id Integer 5 Primary Key

FirstName Varchar 40 Not Null

LastName Varchar 30 Not Null

Email Varchar 50 Not Null

Password Varchar 50 Not Null

User_type Integer 1 Not Null

AdminRegDate Timestamp

2.Branch Table

Column Name Data type Size Constraint

BranchId Integer 5 Primary key

BranchCode Varchar 50 Not Null

BranchStreet Text 50 Not null

BranchCity Text 50 Not Null

Branch State Varchar 50

BranchPincode Varchar 50

BranchCountry Varchar 50

Contact Varchar 10

DateCreated Timestamp

3.Courier Details

Column Name Data Type Size Contraint

Id Integer 5 Primary key

TransactionNumber Varchar 20 Not null

SenderName Varchar 50

SenderContact Integer 10

SenderAddress Varchar 100

RecipientName Varchar 50

RecipientContact Integer 10

RecipientAddress Varchar 100

Type Integer 1

FromBranchId Foreign Key 4

ToBranchId Foreign Key 4

Amount Varchar 4

Balance Varchar 4

AmountStatus Integer 1

CourierDate Timestamp

4.Parcel Tracking Table:

Column Name Data Type Size Constraint

Id Integer 11 Primary Key

CourierId Integer 11 Foreign Key

ReferenceNumber Varchar 20

Type Integer 2

Weight Varchar 30

Height Varchar 30

Length Varchar 30

Price Varchar 30

Status Integer 2

DateCreated Timestamp

5.PaymentDetails Table:

Column Name Data Type Size Constraint

PaymentId Integer 5 Primary Key

ParcelDetailsId Integer 5 Foreign Key

Amount Varchar 50

DateCreated Timestamp

6.Parcel Tracking Master table

Column Name Data Type Size Constraint

Id Integer 2 Primary Key

ParcelTrackingId Integer 5 Foreign Key

Status Integer 5

Datecreated Timestamp

3.16 Test Procedures and Implementation

Software testing is a critical clement of software quality assurance &

represents the ultimate review of specification, design and code

generation.

It is the process of executing a program with a primary objective of

finding errors. Testing gives the guarantee that the software does not fail

and runs according to its specification and in the way the end user

expects.

This can be done by various software testing techniques which provide a

systematic guidance for designing tests that exercise the internal logic of

software components, and exercise the input and output domains of the

program to uncover errors in programming

functions, behavior and performance.

Testing is the exposure of system to trial input to see whether it

produces correct output. Testing is the process of detecting presence of

faults. Once the source code has been generated, software must be tested

to uncover as many errors as possible before delivery to your customer.

Our goal is to design a series of test cases that have likelihood of finding

errors. That's where Software testing Techniques enter into the picture.

A set of test cases designed to exercise both internal login and external

requirements is designed and documented, expected results are defined

and actual results are recorded.

Testing Objectives:-

The testing objectives are summarized in the following three steps:

1. Testing is the process of executing a program with the intent of

finding a bug.

2. A good case is one that has a high probability of finding an as yet

undiscovered error.

3. A successful test is the one that uncover yet an undiscovered error

Unit testing:

Unit testing, also known as component testing refers to tests that verify

the functionality of a specific section of code usually at the functional

level. In an object-oriented environment, this is usually at class-level

and the minimal unit tests include the constructors and destructors.These

type of tests are usually written by developers as they work on code

(white-box style), to ensure that the specific function is working as

expected.

One function might have multiple tests, to catch corner cases or other

branches in the code. Unit testing alone cannot verify the functionality

of a piece of software, but rather is

used to assure that the building blocks of the software work

independently of each other.

Integration Testing:

Integration Testing is any type of software testing that seeks to verify

the interfaces between components against a software design. Software

components may be integrated in an interactive way or all together ("big

bang"). Normally the former is considered a better. practice since it

allows interface issues to be localized more quickly and fixed.

Integration testing works to expose defects in the interfaces and

interaction between integrated components (modules). Progressively

user groups of tested software components corresponding to elements of

the architectural design are integrated and tested until the software

works as a software. System Testing: System Testing tests a completely

integrated system to verify that it meets its requirements. The testing

phase is an important part of software development, It is the process of

finding errors and missing operations and also a complete verification to

determine whether the objectives are met and the user requirements are

satisfied.

Acceptance Testing:

 Acceptance testing is performed with realistic data of the client to

demonstrate that the software is working satisfactorily. Testing here is

focused on external behavior of the system; the internal logic of the

program is not emphasized. Test cases should be selected so that the

largest number of attributes of an equivalence class is exercised at once.

The testing phase is an important part of software development. It is the

process of finding errors and missing operations and also a complete

verification to determine whether the objectives are met and the user

requirements are satisfied. Acceptance testing is performed along with

the client to show that to see that all requirements are satisfied whatever

may be the attributes its working well provided all the attributes are

valid. If not it displays corresponding messages for getting valid

attributes.

Alpha Testing:

 Alpha testing is simulated or actual operational testing by potential

users/customers or an independent test team at developers site. Alpha

testing is often employed for off-the-shelf software as a form of internal

acceptance testing, before the software goes to beta testing. Beta

Testing: Beta testing comes after alpha testing and can be considered a

form of external user acceptance testing. Versions of the software,

known beta versions, are released to a limited audience outside of the

programming team. The software is released to groups of people so that

further testing can ensure the products have few faults or bugs.

Sometimes, beta versions are made available to the open public to

increase the feedback filled to a maximal number of future users.

Usability Testing:

Usability testing is needed to check if the user interface is easy to use

and understand. It is connected mainly with the use of the application.

Security Testing:

Security testing is essential for software that processes confidential data

to prevent system intrusion by hackers.

White Box Testing :

This is the unit testing method where a unit will be taken at a time and

tested thoroughly at a statement level to find the maximum possible

errors. We tested stepwise every piece of code, taking care that every

statement in the code is executed at least once; the white box testing is

also called glass box Testing.

Black Box Testing :

This testing method considers a module as a single unit and checks the

unit at interface and communication with other modules rather getting

into details as statement level. Output for a given set of input

combinations are forwarded other module.

TEST CASES

Test

Case

Id

Scenario To test Steps To

Perform

Expected

Result

Actual

Result

Status

1 Show tracking status

on homepage

Loading

tracking

status on

home screen

Displayed

Status

Data

Displayed

Pass

2 Log-in into application

as

Employee/Manager/A

dmin

1.Open the

log in page

of the

application.

2.Enter the

valid user

name.

3.Enter valid

password.

4.Click on

Application

should

except valid

user name

and valid

password

entered by

user and

should

redirect user

Application

should except

valid user

name and

valid

password

entered by

user and

should

redirect user

Pass

Log in

button

to respected

dashboard

to respected

dashboard

3 Log-in into application

1.Open the

log in page

of the

application.

2.Enter in-

valid user

name.

3.Enter valid

password.

4.Click on

Log in

button.

Application

should not

accept

invalid user

name.

Application

should throw

message

“Invalid

Credentials

Log in denied

with

appropriate

message

Pass

4 Log in into application

1.Open the

log in page

of the

application.

Application

should not

accept

invalid user

Log in denied

with

appropriate

message

Pass

2.Enter the

valid user

name.

3.Enter in-

valid

password.

4.Click on

Log button

name.

Application

should throw

message

“Invalid

Credentials”.

5 Dashboard Check

everthing is

working on

dashboard

Dashboard

should work

fine

Dashboard

working as

expected

Pass

6 Check whether all

status of courier is

displayed with count

Display

courier status

Status

should be

displayed in

right manner

Status

displayed

Pass

7 If user is admin Add

branch details to the

dashboard page

Check

whether

branch

Branch

details added

with

Data Added Pass

details are

added

according to

validation

validation

8 If user is admin

Display branch details

in list on click of

branch list

Check all

branches are

displayed

Should

display all

added

branches

Displaying all

added

branches

Pass

9 If user is admin add

employee details in

respective branch

Check

whether

employee are

added

according to

branch

Employee

should be

added

Employee is

added

sucessfully

Pass

10 If user is admin

display employee list

Check

whether all

employee are

added to list

Employee

should be

displayed in

list

Employee

list is being

displayed

Pass

11 Add courier or parcel Check Parcel Parcel is Pass

whether the

parcel is

getting

added along

with its

properties

should be

added

getting added

12 Check whether added

parcel is displayed in

list of parcels

Added parcel

should be

displayed in

list of parcels

Display list

of parcels

List of parcels

getting

displayed

Pass

13 If user is employee

then display only

parcels related to his

branch

Check

whether

branch

related

parcels being

displayed

Branch

related

parcels

should be

displayed

Branch

related

parcels

getting

displayed

Pass

14 Get all courier related

tracking details

seperately

Check

whether

courier is

Courier

should be

displayed

Courier is

getting

displayed

Pass

being

displayed

according to

status

according to

their

respective

status

according to

status

15 Get tracking number

for each courier

Check

whether

unique

tracking

number is

generated for

each courier

Display

unique

tracking

number

Unique

tracking

number being

displayed

Pass

16 Transaction details Check

whether

transactions

related to

courier is

stored and

getting

displayed

Transaction

details

should

display

correctly

Transactions

getting

displayed

Pass

17 Reports Viewing

reports

Reports

showing

correctly

Reports

working as

expected

pass

CHAPTER 4

 USER MANUAL

4.1 User Manual

For any system to be successful it is important that the intended user

find the system easy to operate. The purpose of the user manual is to

make user acquainted with the system and help user understand the

system and operate it conveniently. The User Manual is prepared

reflexively because it is an item that must accompany every system.

The manual contain several screenshots that describes how to use the

entire system. This Manual helps user to navigate efficiently through the

system and help user to solve issues wherever they occur.

The system contains following users:

1) Admin

2) Customer

3) Employee

Enter tracking/reference number generated while booking courier.You

will get courier details.

Log in into the system using User credentials. You are redirected to

dashboard after successful credential verification of Username and

Password.

How to add and view branch:

1.Select Add branch from the dashboard and you will get a form.

2.Add data and Save. Message of data successfully added generated.

Click Now on the branch list

3.To update a branch:

Click on edit icon to the right of the branch displayed and data will be

updated.

4.How to add and view a courier:

 Select Add courier from the dashboard and you will get a form.

 Add data and Save. Message of data successfully adde generated. Click

Now on the branch list

5.To view courier status:

1. Click on any courier statuses mentioned under parcel details you will get

such scrren for displaying status

4.2 Operations Manual

There are various symbols and buttons on the web application. Here are

their descriptions :

Button Use

To view details of parcel,branch etc

To edit details of parcel,staff etc

To delete any item

To add multiple couriers

To save any type of data

To add new parcel,staff,branch etc

4.3 Program Specifications

1) Add User Details

Module Admin

Program Name Add User Details

Purpose Add user details including employee,customer

etc

Input Details

The required fields should not be blank and the

user should provide valid data for each field.

Output

Details of user are stored in respective users

table

2)Add Branch Details

Module Admin

Program Name Add Branch Details

Purpose Add all branch related details

Input Details

The required fields should not be

blank and the admin should

provide valid data for each field

Output

Details of branch stored in branch

table

3)Add Courier Details

Module Admin/Employee

Program Name Add all courier related details with

details of sender and recipient

Purpose To store all courier related details

Input Details

The required fields should not be

blank and the user should provide

valid data for each field

Output Details of courier stored in courier

table

4)Edit Details

Module Edit Master data from tables

Program Name Edit Masters

Purpose Add, Edit or Delete master data

from the master tables.

Input Details

The admin head should specify the

modifications to be made in the

master data.

Output The data from the master table(s) is

updated

5)Update status

Module Admin or Employee

Program Name Update status of courier

Purpose Store status of courier in respective

table

Input Details

Input accurate courier status

Output Status updated in parcel tracks

table

6)Report generation

Module Reports

Program Name Report Generation

Purpose Show reports of couriers based on

status selected

Input Details

Data will be fetched from the

databse based on the category

selected

Output Reports will be displayed in

Drawbacks and Limitations

1.Forgot Password functionality is not available.User needs to go to the

database to change password.

2.Calculation of price is not done automatically.User needs to enter

price manually according to weight parameters of courier.

3.Customer can view only tracking details which involves only status

and date of courier.

4.Customer login functionality is not available.

5.Limited generation of reports.

Proposed Enhancements

 Following are future changes that are suggested:

1)Customer login should be available.He should be able to book his own

courier in system

2)Forgot password functionality should be added.

3)When courier related parameters are entered like width,height,length

price should be calculated automatically.

Conclusions

Working on the project was a good experience. I understand the

importance of planning and designing as part of software development.

During the project, the real importance for the following principle of

System analysis and design drawned on me.

Some brief points about the project:

 Cms is a system which allows to track courier efficiently along with

displaying dates of status

 The system has a part payment functionality which allows user to make

part payment.

 The system has barcode which displays courier reference no which is

unique for each parcel.

 The system reduces time of courier booking and tracking process.

Bibliography:

The completion of this project would not have been possible

without the following sources listed below:

1. www.google.co.in

2. www.w3school.com

3. www.colorlib.com

4. www.htmlgoodies.com

5. www.getbootstrap.com

6. www.codeofaninja.com

7. www.freecodecamp.org

 ANNEXURES

ANNEXURE 1

 USER INTERFACE SCREEN

Homepage

Login Page

Dashboard

Add branch

Branch List

Update branch details

Add Branch Staff

List Branch Staff

Update admin

Add new parcel

Add new parcel

Add multiple parcels

Parcel List

View Parcel Details

View Parcel Details

Courier Status

Courier Status

Courier Status

Staff Dashboard

Staff Parcel List

Update Staff

Transactions

 ANNEXURE 2

 OUTPUT REPORTS

Datewise and statuswise Courier Reports

Courier Sales Report

 ANNEXURE 3

 SAMPLE PROGRAM CODE

Code for adding Courier

<?php if(!isset($conn)){ include 'db_connect.php'; } ?>

<style>

 textarea{

 resize: none;

 }

</style>

<div class="col-lg-12">

 <div class="card card-outline card-primary">

 <div class="card-body">

 <form action="" id="manage-parcel"

name="add_parcel">

 <input type="hidden" name="id" value="<?php echo isset($id) ?

$id : '' ?>">

 <input type="hidden" name="pd_id" value="<?php echo

isset($pd_id) ? $pd_id : '' ?>">

 <div id="msg" class=""></div>

 <div class="row">

 <div class="col-md-6">

 <b style="font-size: 18px;">Sender Information

 <div class="form-group">

 <label style="font-size: 18px;" for="" class="control-

label">Full Name</label>

 <input style="font-size: 18px;"type="text"

name="sender_name" id="sender_name" class="form-control form-

control-sm" oninput="senderName_Validate()" value="<?php echo

isset($sender_name) ? $sender_name : '' ?>" required>

 <p id="senderName" style="color: red"></p>

 </div>

 <div class="form-group">

 <label style="font-size: 18px;" for="" class="control-

label">Address</label>

 <input style="font-size: 18px;" type="text"

name="sender_address" id="" class="form-control form-control-sm"

value="<?php echo isset($sender_address) ? $sender_address : '' ?>"

required>

 </div>

 <div class="form-group">

 <label style="font-size: 18px;" for="" class="control-

label">City</label>

 <input style="font-size: 18px;" type="text"

name="sender_city" id="sender_city" class="form-control form-control-

sm" oninput="senderCity_Validate()" value="<?php echo

isset($sender_city) ? $sender_city : '' ?>" required>

 <p id="senderCity" style="color: red"></p>

 </div>

 <div class="form-group">

 <label style="font-size: 18px;" for="" class="control-

label">Contact </label>

 <input style="font-size: 18px;" type="text"

name="sender_contact" id="sender_contact" class="form-control form-

control-sm" oninput="senderContact_Validate()" value="<?php echo

isset($sender_contact) ? $sender_contact : '' ?>" required>

 <p id="senderContact" style="color: red"></p>

 </div>

 </div>

 <div class="col-md-6">

 <b style="font-size: 18px;">Recipient Information

 <div class="form-group">

 <label style="font-size: 18px;" for="" class="control-

label">Full Name</label>

 <input style="font-size: 18px;" type="text"

name="recipient_name" id="recipient_name" class="form-control form-

control-sm" oninput="recipientName_Validate() " value="<?php echo

isset($recipient_name) ? $recipient_name : '' ?>" required>

 <p id="recipientName" style="color: red"></p>

 </div>

 <div class="form-group">

 <label style="font-size: 18px;" for="" class="control-

label">Address</label>

 <input style="font-size: 18px;" type="text"

name="recipient_address" id="" class="form-control form-control-sm"

value="<?php echo isset($recipient_address) ? $recipient_address : ''

?>" required>

 </div>

 <div class="form-group">

 <label style="font-size: 18px;" for="" class="control-

label">City</label>

 <input style="font-size: 18px;" type="text"

name="recipient_city" id="recipient_city" class="form-control form-

control-sm" oninput = "recipientCity_Validate()"value="<?php echo

isset($recipient_city) ? $recipient_city : '' ?>" required>

 <p id="recipientCity" style="color: red"></p>

 </div>

 <div class="form-group">

 <label style="font-size: 18px;" for="" class="control-

label">Contact </label>

 <input style="font-size: 18px;" type="text"

name="recipient_contact" id="recipient_contact" class="form-control

form-control-sm" oninput="recipientContact_Validate()"value="<?php

echo isset($recipient_contact) ? $recipient_contact : '' ?>" required>

 <p id="recipientContact" style="color: red"></p>

 </div>

 </div>

 </div>

 <hr>

 <div class="row">

 <div class="col-md-6">

 <div class="form-group">

 <label style="font-size: 18px;" for="dtype">Type</label>

 <input style="font-size: 18px;" type="checkbox" name="type"

id="dtype" <?php echo isset($type) && $type == 1 ? 'checked' : '' ?>

data-bootstrap-switch data-toggle="toggle" data-on="Deliver" data-

off="Pickup" class="switch-toggle status_chk" data-size="xs" data-

offstyle="info" data-width="5rem" value="1">

 <small style="font-size: 15px;">Deliver = Deliver to Recipient

Address</small>

 <small style="font-size: 15px;">, Pickup = Pickup to nearest

Branch</small>

 </div>

 </div>

 <div class="col-md-6" id="" <?php echo isset($type) && $type

== 1 ? 'style="display: none"' : '' ?>>

 <?php if($_SESSION['login_branch_id'] <= 0): ?>

 <div class="form-group" id="fbi-field">

 <label style="font-size: 18px;" for="" class="control-

label">Branch Processed</label>

 <select name="from_branch_id" id="from_branch_id"

class="form-control select2" required="">

 <option style="font-size: 18px;" value=""></option>

 <?php

 $branches = $conn->query("SELECT *,concat(street,',

',city,', ',state,', ',pincode,', ',country) as address FROM branches ");

 while($row = $branches->fetch_assoc()):

 ?>

 <option value="<?php echo $row['id'] ?>" <?php echo

isset($from_branch_id) && $from_branch_id == $row['id'] ?

"selected":'' ?>><?php echo $row['branch_code']. ' |

'.(ucwords($row['address'])) ?></option>

 <?php endwhile; ?>

 </select>

 </div>

 <?php else: ?>

 <input type="hidden" name="from_branch_id" value="<?php

echo $_SESSION['login_branch_id'] ?>">

 <?php endif; ?>

 <div class="form-group" id="tbi-field">

 <option style="font-size:18px;" value=""></option>

 <label style="font-size: 18px;" for="" class="control-

label">Pickup Branch</label>

 <select name="to_branch_id" id="to_branch_id" class="form-

control select2">

 <option value=""></option>

 <?php

 $branches = $conn->query("SELECT *,concat(street,',

',city,', ',state,', ',pincode,', ',country) as address FROM branches");

 while($row = $branches->fetch_assoc()):

 ?>

 <option value="<?php echo $row['id'] ?>" <?php echo

isset($to_branch_id) && $to_branch_id == $row['id'] ? "selected":''

?>><?php echo $row['branch_code']. ' | '.(ucwords($row['address']))

?></option>

 <?php endwhile; ?>

 </select>

 </div>

 </div>

 </div>

 <hr>

 <b style="font-size:18px;">Parcel Information

 <table class="table table-bordered" id="parcel-items">

 <thead>

 <tr style="font-size:18px;">

 <th>Weight(in kg)</th>

 <th>Height(in cms)</th>

 <th>Length(in cms)</th>

 <th>Width(in cms)</th>

 <th>Price</th>

 <?php if(!isset($id)): ?>

 <th></th>

 <?php endif; ?>

 </tr>

 </thead>

 <tbody>

 <tr style="font-size:18px;">

 <td><input type="text" name='weight[]' value="<?php echo

isset($weight) ? $weight :'' ?>" required placeholder="in kgs"></td>

 <td><input type="text" name='height[]' value="<?php echo

isset($height) ? $height :'' ?>" required placeholder="in cms"></td>

 <td><input type="text" name='length[]' value="<?php echo

isset($length) ? $length :'' ?>" required placeholder="in cms"></td>

 <td><input type="text" name='width[]' value="<?php echo

isset($width) ? $width :'' ?>" required placeholder="in cms"></td>

 <td><input type="text" name='price[]' value="<?php echo

isset($price) ? $price :'' ?>" required ></td>

 <?php if(!isset($id)): ?>

 <td><button class="btn btn-sm btn-danger" type="button"

onclick="$(this).closest('tr').remove() && calc()"><i class="fa fa-

times"></i></button></td>

 <?php endif; ?>

 </tr>

 </tbody>

 <?php if(!isset($id)): ?>

 <tfoot style="font-size:18px;">

 <th colspan="4" class="text-right">Total</th>

 <th class="text-right" id="tAmount">0.00</th>

 <th></th>

 </tfoot>

 <input type="hidden" id="amount" name="amount">

 <?php endif; ?>

 </table>

 <?php if(!isset($id)): ?>

 <div class="row">

 <div class="col-md-6">

 <div class="form-group">

 <label style="font-size:18px;" for="">Amount Paid</label>

 <input style="font-size:18px;" type="text" name="payment"

id="" class="form-control form-control-sm" value="<?php echo

isset($payment) ? $payment : '' ?>" required value="0">

 </div>

 </div>

 <div class="col-md-12 d-flex justify-content-end">

 <button style="font-size:18px;" class="btn btn-sm btn-primary

bg-gradient-primary" type="button" id="new_parcel"><i class="fa fa-

item"></i> Add Item</button>

 </div>

 </div>

 <?php endif; ?>

 </form>

 </div>

 <div class="card-footer border-top border-info">

 <div class="d-flex w-100 justify-content-center align-

items-center">

 <button style="font-size:18px;" class="btn btn-flat

bg-gradient-primary mx-2" form="manage-parcel">Save</button>

 <a style="font-size:18px;" class="btn btn-flat bg-

gradient-secondary mx-2"

href="./index.php?page=parcel_list">Cancel

 </div>

 </div>

 </div>

</div>

<div id="ptr_clone" class="d-none">

 <table>

 <tr style="font-size:18px;">

 <td><input type="text" name='weight[]' required></td>

 <td><input type="text" name='height[]' required></td>

 <td><input type="text" name='length[]' required></td>

 <td><input type="text" name='width[]' required></td>

 <td><input type="text" name='price[]' required ></td>

 <td><button class="btn btn-sm btn-danger" type="button"

onclick="$(this).closest('tr').remove() && calc()"><i class="fa fa-

times"></i></button></td>

 </tr>

 </table>

</div>

<script>

 function senderName_Validate() {

 var x = document.getElementById("sender_name").value;

 if(!/^[a-zA-Z-,]+(\s{0,1}[a-zA-Z-,

])*$/g.test(document.add_parcel.sender_name.value)){

 document.getElementById("senderName").innerHTML = "Please

enter alphabets or characters only";

 document.add_parcel.sender_name.focus();

 }

 else{

 document.getElementById("senderName").innerHTML = " ";

 }

 }

 function recipientName_Validate() {

 var x = document.getElementById("recipient_name").value;

 if(!/^[a-zA-Z-,]+(\s{0,1}[a-zA-Z-,

])*$/g.test(document.add_parcel.recipient_name.value)){

 document.getElementById("recipientName").innerHTML = "Please

enter alphabets or characters only";

 document.add_parcel.recipient_name.focus();

 }

 else{

 document.getElementById("recipientName").innerHTML = " ";

 }

 }

 function senderCity_Validate() {

 var x = document.getElementById("sender_city").value;

 if(!/^[a-zA-Z-,]+(\s{0,1}[a-zA-Z-,

])*$/g.test(document.add_parcel.sender_city.value)){

 document.getElementById("senderCity").innerHTML = "Please

enter alphabets or characters only";

 document.add_parcel.sender_city.focus();

 }

 else{

 document.getElementById("senderCity").innerHTML = " ";

 }

 }

 function recipientCity_Validate() {

 var x = document.getElementById("recipient_city").value;

 if(!/^[a-zA-Z-,]+(\s{0,1}[a-zA-Z-,

])*$/g.test(document.add_parcel.recipient_city.value)){

 document.getElementById("recipientCity").innerHTML = "Please

enter alphabets or characters only";

 document.add_parcel.recipient_city.focus();

 }

 else{

 document.getElementById("recipientCity").innerHTML = " ";

 }

 }

 function senderContact_Validate() {

 var y = document.getElementById('sender_contact').value;

 if (/^\d{11}$/.test(y)) {

 document.getElementById("senderContact").innerHTML = "Enter

upto 10 numbers only";

 }

 else {

 document.getElementById("senderContact").innerHTML = " ";

 }

 }

 function recipientContact_Validate() {

 var y = document.getElementById('recipient_contact').value;

 if (/^\d{11}$/.test(y)) {

 document.getElementById("recipientContact").innerHTML = "Enter

upto 10 numbers only";

 }

 else {

 document.getElementById("recipientContact").innerHTML = " ";

 }

 }

 /*function calcTotal() {

 var msg;

 var weight = parseInt($('[name="weight[]"]').value;);

 var discount;

 var total = $('#parcel-items [name="price[]"]').text(parseFloat(total))

 if(weight >= 0 && weight <= 150) {

 total = weight * 20

 }

 else if(weight >150 && weight <= 300) {

 total = weight * 15

 }

 else if(weight >300 && weight <= 400) {

 total = weight * 10

 }

 }*/

 $('#dtype').change(function(){

 if($(this).prop('checked') == true){

 $('#tbi-field').hide()

 }else{

 $('#tbi-field').show()

 }

 })

 $('[name="price[]"]').keyup(function(){

 calc()

 })

 $('#new_parcel').click(function(){

 var tr = $('#ptr_clone tr').clone()

 $('#parcel-items tbody').append(tr)

 $('[name="price[]"]').keyup(function(){

 calc()

 })

 $('.number').on('input keyup keypress',function(){

 var val = $(this).val()

 val = val.replace(/[^0-9]/, '');

 val = val.replace(/,/g, '');

 val = val > 0 ? parseFloat(val).toLocaleString("en-US") : 0;

 $(this).val(val)

 })

 })

 $('#manage-parcel').submit(function(e){

 e.preventDefault()

 start_load()

 if($('#parcel-items tbody tr').length <= 0){

 alert_toast("Please add atleast 1 parcel information.","error")

 end_load()

 return false;

 }

 $.ajax({

 url:'ajax.php?action=save_parcel',

 data: new FormData($(this)[0]),

 cache: false,

 contentType: false,

 processData: false,

 method: 'POST',

 type: 'POST',

 success:function(resp){

 // if(resp){

 // resp = JSON.parse(resp)

 // if(resp.status == 1){

 // alert_toast('Data successfully saved',"success");

 // end_load()

 // var nw =

window.open('print_pdets.php?ids='+resp.ids,"_blank","height=700,wid

th=900")

 // }

 // }

 if(resp == 1){

 alert_toast('Data successfully saved',"success");

 setTimeout(function(){

 location.href = 'index.php?page=parcel_list';

 },2000)

 }else{

 alert_toast('An error occured',"error");

 end_load()

 }

 }

 })

 })

 function displayImgCover(input,_this) {

 if (input.files && input.files[0]) {

 var reader = new FileReader();

 reader.onload = function (e) {

 $('#cover').attr('src', e.target.result);

 }

 reader.readAsDataURL(input.files[0]);

 }

 }

 function calc(){

 var total = 0 ;

 $('#parcel-items [name="price[]"]').each(function(){

 var p = $(this).val();

 p = p.replace(/,/g,'')

 p = p > 0 ? p : 0;

 total = parseFloat(p) + parseFloat(total)

 })

 if($('#tAmount').length > 0)

 $('#tAmount').text(parseFloat(total).toLocaleString('en-

US',{style:'decimal',maximumFractionDigits:2,minimumFractionDigits:

2}))

 $('#amount').val(parseFloat(total))

 }

</script>

